功能单元间相互作用诱导n型(Bi2)x(Bi2Te3)y伪超晶格电子能带结构演化及热电性能改善

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yujie Ouyang, Min Zhang, Chunxia Li, Xianda Li, Sen Xie, Fan Yan, Haoran Ge, Ziwei Li, Qiwei Tong, Pierre F. P. Poudeu, Yong Liu, Wei Liu* and Xinfeng Tang*, 
{"title":"功能单元间相互作用诱导n型(Bi2)x(Bi2Te3)y伪超晶格电子能带结构演化及热电性能改善","authors":"Yujie Ouyang,&nbsp;Min Zhang,&nbsp;Chunxia Li,&nbsp;Xianda Li,&nbsp;Sen Xie,&nbsp;Fan Yan,&nbsp;Haoran Ge,&nbsp;Ziwei Li,&nbsp;Qiwei Tong,&nbsp;Pierre F. P. Poudeu,&nbsp;Yong Liu,&nbsp;Wei Liu* and Xinfeng Tang*,&nbsp;","doi":"10.1021/acsaem.4c0254910.1021/acsaem.4c02549","DOIUrl":null,"url":null,"abstract":"<p >An ordered construction of functional units is a promising avenue to synergistically optimize the electrical and thermal transport properties of superlattices and pseudosuperlattices. Although it is accepted that interlayer interactions between functional units could effectively regulate carrier transport parameters, the influence of artificial stacking modalities on electronic band structures and thermoelectric performance required in-depth studies. Here, we report the fabrication of two batches of n-type (Bi<sub>2</sub>)<sub><i>x</i></sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub><i>y</i></sub> pseudosuperlattice films with varying thicknesses and termination surfaces. An obvious downshift of the Fermi level position and a remarkable increase of the electron density were observed in the (Bi<sub>2</sub>)<sub><i>x</i></sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub><i>y</i></sub> films with rising Bi<sub>2</sub> content, which is attributed to the spontaneous electron injection from the Bi<sub>2</sub> layers to the Bi<sub>2</sub>Te<sub>3</sub> layers due to their work function difference. By angle-resolved photoemission spectroscopy measurements, we observed rich electronic band structures in Bi<sub>2</sub>-terminated (Bi<sub>2</sub>)<sub><i>x</i></sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub><i>y</i></sub> films, containing two sets of band dispersions: one originating from Bi<sub>2</sub>Te<sub>3</sub> and the other from the hybridization of Bi<sub>2</sub> states and Bi<sub>2</sub>Te<sub>3</sub> states, similar to those reported in Bi<sub>1</sub>Te<sub>1</sub> and Bi<sub>4</sub>Te<sub>3</sub> superlattices. In contrast, the band dispersions are dominated by the energy bands from the Bi<sub>2</sub>Te<sub>3</sub> compound when the Bi<sub>2</sub>Te<sub>3</sub> layers are the termination surfaces. Moreover, the thinner films showed higher electron density and carrier effective mass due to the suppression of p-type Bi<sub>Te</sub> antisite defects. Finally, the (Bi<sub>2</sub>)<sub>12</sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub>6</sub> pseudosuperlattice film achieved the highest power factor of 1.27 mW m<sup>–1</sup> K<sup>–2</sup>, surpassing the performance of pristine Bi<sub>2</sub>Te<sub>3</sub> and Bi films as well as other pseudosuperlattices.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 24","pages":"12048–12058 12048–12058"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactions between Functional Units Inducing the Evolution of Electronic Band Structure and Improved Thermoelectric Performance of n-Type (Bi2)x(Bi2Te3)y Pseudosuperlattices\",\"authors\":\"Yujie Ouyang,&nbsp;Min Zhang,&nbsp;Chunxia Li,&nbsp;Xianda Li,&nbsp;Sen Xie,&nbsp;Fan Yan,&nbsp;Haoran Ge,&nbsp;Ziwei Li,&nbsp;Qiwei Tong,&nbsp;Pierre F. P. Poudeu,&nbsp;Yong Liu,&nbsp;Wei Liu* and Xinfeng Tang*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0254910.1021/acsaem.4c02549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An ordered construction of functional units is a promising avenue to synergistically optimize the electrical and thermal transport properties of superlattices and pseudosuperlattices. Although it is accepted that interlayer interactions between functional units could effectively regulate carrier transport parameters, the influence of artificial stacking modalities on electronic band structures and thermoelectric performance required in-depth studies. Here, we report the fabrication of two batches of n-type (Bi<sub>2</sub>)<sub><i>x</i></sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub><i>y</i></sub> pseudosuperlattice films with varying thicknesses and termination surfaces. An obvious downshift of the Fermi level position and a remarkable increase of the electron density were observed in the (Bi<sub>2</sub>)<sub><i>x</i></sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub><i>y</i></sub> films with rising Bi<sub>2</sub> content, which is attributed to the spontaneous electron injection from the Bi<sub>2</sub> layers to the Bi<sub>2</sub>Te<sub>3</sub> layers due to their work function difference. By angle-resolved photoemission spectroscopy measurements, we observed rich electronic band structures in Bi<sub>2</sub>-terminated (Bi<sub>2</sub>)<sub><i>x</i></sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub><i>y</i></sub> films, containing two sets of band dispersions: one originating from Bi<sub>2</sub>Te<sub>3</sub> and the other from the hybridization of Bi<sub>2</sub> states and Bi<sub>2</sub>Te<sub>3</sub> states, similar to those reported in Bi<sub>1</sub>Te<sub>1</sub> and Bi<sub>4</sub>Te<sub>3</sub> superlattices. In contrast, the band dispersions are dominated by the energy bands from the Bi<sub>2</sub>Te<sub>3</sub> compound when the Bi<sub>2</sub>Te<sub>3</sub> layers are the termination surfaces. Moreover, the thinner films showed higher electron density and carrier effective mass due to the suppression of p-type Bi<sub>Te</sub> antisite defects. Finally, the (Bi<sub>2</sub>)<sub>12</sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub>6</sub> pseudosuperlattice film achieved the highest power factor of 1.27 mW m<sup>–1</sup> K<sup>–2</sup>, surpassing the performance of pristine Bi<sub>2</sub>Te<sub>3</sub> and Bi films as well as other pseudosuperlattices.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"7 24\",\"pages\":\"12048–12058 12048–12058\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c02549\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02549","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

功能单元的有序构建是协同优化超晶格和伪超晶格的电和热输运性质的一个有希望的途径。虽然人们普遍认为功能单元之间的层间相互作用可以有效地调节载流子输运参数,但人工堆叠方式对电子能带结构和热电性能的影响还需要深入研究。在这里,我们报道了两批具有不同厚度和终止面的n型(Bi2)x(Bi2Te3)y伪超晶格薄膜的制备。在(Bi2)x(Bi2Te3)y薄膜中,随着Bi2含量的增加,费米能级位置明显下降,电子密度显著增加,这是由于Bi2层与Bi2Te3层的功函数不同,电子从Bi2层自发地注入到Bi2Te3层。通过角分辨光谱学测量,我们在Bi2端(Bi2)x(Bi2Te3)y薄膜中观察到丰富的电子能带结构,包含两组能带色散:一组来自Bi2Te3,另一组来自Bi2态和Bi2Te3态的杂化,类似于Bi1Te1和Bi4Te3超晶格。相反,当Bi2Te3层作为终止面时,能带色散主要是来自Bi2Te3化合物的能带。此外,由于抑制了p型BiTe反位缺陷,较薄的薄膜具有更高的电子密度和载流子有效质量。最后,(Bi2)12(Bi2Te3)6伪超晶格薄膜获得了最高的功率因数1.27 mW m-1 K-2,超过了原始Bi2Te3和Bi薄膜以及其他伪超晶格的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interactions between Functional Units Inducing the Evolution of Electronic Band Structure and Improved Thermoelectric Performance of n-Type (Bi2)x(Bi2Te3)y Pseudosuperlattices

Interactions between Functional Units Inducing the Evolution of Electronic Band Structure and Improved Thermoelectric Performance of n-Type (Bi2)x(Bi2Te3)y Pseudosuperlattices

An ordered construction of functional units is a promising avenue to synergistically optimize the electrical and thermal transport properties of superlattices and pseudosuperlattices. Although it is accepted that interlayer interactions between functional units could effectively regulate carrier transport parameters, the influence of artificial stacking modalities on electronic band structures and thermoelectric performance required in-depth studies. Here, we report the fabrication of two batches of n-type (Bi2)x(Bi2Te3)y pseudosuperlattice films with varying thicknesses and termination surfaces. An obvious downshift of the Fermi level position and a remarkable increase of the electron density were observed in the (Bi2)x(Bi2Te3)y films with rising Bi2 content, which is attributed to the spontaneous electron injection from the Bi2 layers to the Bi2Te3 layers due to their work function difference. By angle-resolved photoemission spectroscopy measurements, we observed rich electronic band structures in Bi2-terminated (Bi2)x(Bi2Te3)y films, containing two sets of band dispersions: one originating from Bi2Te3 and the other from the hybridization of Bi2 states and Bi2Te3 states, similar to those reported in Bi1Te1 and Bi4Te3 superlattices. In contrast, the band dispersions are dominated by the energy bands from the Bi2Te3 compound when the Bi2Te3 layers are the termination surfaces. Moreover, the thinner films showed higher electron density and carrier effective mass due to the suppression of p-type BiTe antisite defects. Finally, the (Bi2)12(Bi2Te3)6 pseudosuperlattice film achieved the highest power factor of 1.27 mW m–1 K–2, surpassing the performance of pristine Bi2Te3 and Bi films as well as other pseudosuperlattices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信