超高分辨率遥感影像在红树林制图中的比例效应

IF 7.6 Q1 REMOTE SENSING
Hanwen Zhang , Shan Wei , Xindan Liang , Yiping Chen , Hongsheng Zhang
{"title":"超高分辨率遥感影像在红树林制图中的比例效应","authors":"Hanwen Zhang ,&nbsp;Shan Wei ,&nbsp;Xindan Liang ,&nbsp;Yiping Chen ,&nbsp;Hongsheng Zhang","doi":"10.1016/j.jag.2024.104310","DOIUrl":null,"url":null,"abstract":"<div><div>Mangroves, critical for ecological sustainability, are challenging to map accurately due to their fragmented nature and difficult accessibility. Existing datasets, often constrained to 10 m or above resolutions, could misrepresent fragmented mangrove regions and suffer from sampling biases, limiting their regional applicability. Furthermore, scale conversion’s spatial and statistical implications on mangrove mapping accuracy and area estimation remain largely unexplored. This study proposes a novel framework that leverages UHR (0.2 m) aerial photos and the DeepLabV3+ model for fine-scale mapping and systematically simulates and quantifies scale-induced effects. The resultant 20 cm-resolution mangrove map of Hong Kong achieved an overall accuracy (OA) of 92.1 %, with up to 53 % improvement compared to various existing datasets. It delineates complex boundaries in diverse coastal settings while preserving the structural integrity of fragmented patches. The total mangrove area in Hong Kong is estimated at ∼720 ha, with Deep Bay comprising 77.5 %. The scale effects analysis revealed pronounced sensitivity in fragmented habitats, where each 1 m increase in resolution could result in an average area underestimation of 5000 m<sup>2</sup> and up to 25 % OA degradation when transitioning from 0.2 m to 30 m. Moreover, integrating patch geometry and scale responses indicated that 6 m is the optimal scale for monitoring. Beyond this, OA could sharply decline to below 82 % at the commonly used 10 m resolution and drop as low as 66 % at 30 m. These findings highlight the critical importance of fine-scale mapping using UHR images for effective mangrove conservation and management.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104310"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale effects in mangrove mapping from ultra-high-resolution remote sensing imagery\",\"authors\":\"Hanwen Zhang ,&nbsp;Shan Wei ,&nbsp;Xindan Liang ,&nbsp;Yiping Chen ,&nbsp;Hongsheng Zhang\",\"doi\":\"10.1016/j.jag.2024.104310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mangroves, critical for ecological sustainability, are challenging to map accurately due to their fragmented nature and difficult accessibility. Existing datasets, often constrained to 10 m or above resolutions, could misrepresent fragmented mangrove regions and suffer from sampling biases, limiting their regional applicability. Furthermore, scale conversion’s spatial and statistical implications on mangrove mapping accuracy and area estimation remain largely unexplored. This study proposes a novel framework that leverages UHR (0.2 m) aerial photos and the DeepLabV3+ model for fine-scale mapping and systematically simulates and quantifies scale-induced effects. The resultant 20 cm-resolution mangrove map of Hong Kong achieved an overall accuracy (OA) of 92.1 %, with up to 53 % improvement compared to various existing datasets. It delineates complex boundaries in diverse coastal settings while preserving the structural integrity of fragmented patches. The total mangrove area in Hong Kong is estimated at ∼720 ha, with Deep Bay comprising 77.5 %. The scale effects analysis revealed pronounced sensitivity in fragmented habitats, where each 1 m increase in resolution could result in an average area underestimation of 5000 m<sup>2</sup> and up to 25 % OA degradation when transitioning from 0.2 m to 30 m. Moreover, integrating patch geometry and scale responses indicated that 6 m is the optimal scale for monitoring. Beyond this, OA could sharply decline to below 82 % at the commonly used 10 m resolution and drop as low as 66 % at 30 m. These findings highlight the critical importance of fine-scale mapping using UHR images for effective mangrove conservation and management.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"136 \",\"pages\":\"Article 104310\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156984322400668X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156984322400668X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

红树林对生态可持续性至关重要,但由于其分散的性质和难以接近的特点,准确绘制红树林地图具有挑战性。现有的数据集通常被限制在10米或更高的分辨率,可能会错误地描述破碎的红树林区域,并且存在抽样偏差,限制了它们的区域适用性。此外,尺度转换对红树林制图精度和面积估算的空间和统计意义在很大程度上仍未得到探索。本研究提出了一个新的框架,利用UHR (0.2 m)航空照片和DeepLabV3+模型进行精细比例尺制图,系统地模拟和量化比例尺诱导的效应。生成的20厘米分辨率香港红树林地图的整体精度达到92.1%,与现有的各种数据集相比,准确度提高了53%。它在不同的海岸环境中描绘了复杂的边界,同时保持了破碎斑块的结构完整性。香港的红树林总面积估计约为720公顷,后海湾占77.5%。尺度效应分析显示,在破碎化生境中,分辨率每增加1 m,在从0.2 m过渡到30 m时,可能导致平均面积低估5000 m2和高达25%的OA退化。此外,综合斑块几何和尺度响应表明,6 m是监测的最佳尺度。除此之外,在常用的10米分辨率下,OA可能急剧下降到82%以下,在30米分辨率下下降到66%。这些发现强调了利用紫外线辐射图像进行精细测绘对于有效保护和管理红树林的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Scale effects in mangrove mapping from ultra-high-resolution remote sensing imagery

Scale effects in mangrove mapping from ultra-high-resolution remote sensing imagery
Mangroves, critical for ecological sustainability, are challenging to map accurately due to their fragmented nature and difficult accessibility. Existing datasets, often constrained to 10 m or above resolutions, could misrepresent fragmented mangrove regions and suffer from sampling biases, limiting their regional applicability. Furthermore, scale conversion’s spatial and statistical implications on mangrove mapping accuracy and area estimation remain largely unexplored. This study proposes a novel framework that leverages UHR (0.2 m) aerial photos and the DeepLabV3+ model for fine-scale mapping and systematically simulates and quantifies scale-induced effects. The resultant 20 cm-resolution mangrove map of Hong Kong achieved an overall accuracy (OA) of 92.1 %, with up to 53 % improvement compared to various existing datasets. It delineates complex boundaries in diverse coastal settings while preserving the structural integrity of fragmented patches. The total mangrove area in Hong Kong is estimated at ∼720 ha, with Deep Bay comprising 77.5 %. The scale effects analysis revealed pronounced sensitivity in fragmented habitats, where each 1 m increase in resolution could result in an average area underestimation of 5000 m2 and up to 25 % OA degradation when transitioning from 0.2 m to 30 m. Moreover, integrating patch geometry and scale responses indicated that 6 m is the optimal scale for monitoring. Beyond this, OA could sharply decline to below 82 % at the commonly used 10 m resolution and drop as low as 66 % at 30 m. These findings highlight the critical importance of fine-scale mapping using UHR images for effective mangrove conservation and management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信