计算准确可靠的含铝分子的振动光谱数据

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
C. Zachary Palmer, Rebecca A. Firth, Ryan C. Fortenberry
{"title":"计算准确可靠的含铝分子的振动光谱数据","authors":"C. Zachary Palmer,&nbsp;Rebecca A. Firth,&nbsp;Ryan C. Fortenberry","doi":"10.1002/jcc.27524","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The difficulty of quantum chemically computing vibrational, rotational, and rovibrational reference data via quartic force fields (QFFs) for molecules containing aluminum appears to be alleviated herein using a hybrid approach based upon CCSD(T)-F12b/cc-pCVTZ further corrected for conventional CCSD(T) scalar relativity within the harmonic terms and simple CCSD(T)-F12b/cc-pVTZ for the cubic and quartic terms: the F12-TcCR+TZ QFF. Aluminum containing molecules are theorized to participate in significant chemical processes in both the Earth's upper atmosphere as well as within circumstellar and interstellar media. However, experimental data for the identification of these molecules are limited, showcasing the potential for quantum chemistry to contribute significant amounts of spectral reference data. Unfortunately, current methods for the computation of rovibrational spectral data have been shown previously to exhibit large errors for aluminum-containing molecules. In this work, ten different methods are benchmarked to determine a method to produce experimentally-accurate rovibrational data for theorized aluminum species. Of the benchmarked methods, the explicitly correlated, hybrid F12-TcCR+TZ QFF consistently produces the most accurate results compared to both gas-phase and Ar-matrix experimental data. This method combines the accuracy of the composite F12-TcCR energies along with the numerical stability of non-composite anharmonic terms where the non-rigid nature of aluminum bonding can be sufficiently treated.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Accurate & Reliable Rovibrational Spectral Data for Aluminum-Bearing Molecules\",\"authors\":\"C. Zachary Palmer,&nbsp;Rebecca A. Firth,&nbsp;Ryan C. Fortenberry\",\"doi\":\"10.1002/jcc.27524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The difficulty of quantum chemically computing vibrational, rotational, and rovibrational reference data via quartic force fields (QFFs) for molecules containing aluminum appears to be alleviated herein using a hybrid approach based upon CCSD(T)-F12b/cc-pCVTZ further corrected for conventional CCSD(T) scalar relativity within the harmonic terms and simple CCSD(T)-F12b/cc-pVTZ for the cubic and quartic terms: the F12-TcCR+TZ QFF. Aluminum containing molecules are theorized to participate in significant chemical processes in both the Earth's upper atmosphere as well as within circumstellar and interstellar media. However, experimental data for the identification of these molecules are limited, showcasing the potential for quantum chemistry to contribute significant amounts of spectral reference data. Unfortunately, current methods for the computation of rovibrational spectral data have been shown previously to exhibit large errors for aluminum-containing molecules. In this work, ten different methods are benchmarked to determine a method to produce experimentally-accurate rovibrational data for theorized aluminum species. Of the benchmarked methods, the explicitly correlated, hybrid F12-TcCR+TZ QFF consistently produces the most accurate results compared to both gas-phase and Ar-matrix experimental data. This method combines the accuracy of the composite F12-TcCR energies along with the numerical stability of non-composite anharmonic terms where the non-rigid nature of aluminum bonding can be sufficiently treated.</p>\\n </div>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27524\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27524","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用一种基于CCSD(T)-F12b/cc-pCVTZ的混合方法(F12-TcCR+TZ QFF),通过含铝分子的四次力场(QFF)计算振动、旋转和旋转参考数据的困难似乎得到了缓解,该方法进一步修正了谐波项内传统的CCSD(T)标量相对论,并对三次和四次项进行了简单的CCSD(T)-F12b/cc-pVTZ: F12-TcCR+TZ QFF)。理论上,含铝分子参与了地球上层大气以及星周和星际介质中的重要化学过程。然而,用于识别这些分子的实验数据是有限的,这表明量子化学有潜力贡献大量的光谱参考数据。不幸的是,目前计算旋转振动光谱数据的方法先前已被证明对含铝分子有很大的误差。在这项工作中,十种不同的方法进行了基准测试,以确定一种方法来产生实验精确的理论铝种的振动数据。在基准方法中,明确相关的混合F12-TcCR+TZ QFF与气相和ar矩阵实验数据相比,始终产生最准确的结果。该方法结合了复合F12-TcCR能量的准确性以及非复合非调和项的数值稳定性,可以充分处理铝键合的非刚性性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computing Accurate & Reliable Rovibrational Spectral Data for Aluminum-Bearing Molecules

Computing Accurate & Reliable Rovibrational Spectral Data for Aluminum-Bearing Molecules

Computing Accurate & Reliable Rovibrational Spectral Data for Aluminum-Bearing Molecules

The difficulty of quantum chemically computing vibrational, rotational, and rovibrational reference data via quartic force fields (QFFs) for molecules containing aluminum appears to be alleviated herein using a hybrid approach based upon CCSD(T)-F12b/cc-pCVTZ further corrected for conventional CCSD(T) scalar relativity within the harmonic terms and simple CCSD(T)-F12b/cc-pVTZ for the cubic and quartic terms: the F12-TcCR+TZ QFF. Aluminum containing molecules are theorized to participate in significant chemical processes in both the Earth's upper atmosphere as well as within circumstellar and interstellar media. However, experimental data for the identification of these molecules are limited, showcasing the potential for quantum chemistry to contribute significant amounts of spectral reference data. Unfortunately, current methods for the computation of rovibrational spectral data have been shown previously to exhibit large errors for aluminum-containing molecules. In this work, ten different methods are benchmarked to determine a method to produce experimentally-accurate rovibrational data for theorized aluminum species. Of the benchmarked methods, the explicitly correlated, hybrid F12-TcCR+TZ QFF consistently produces the most accurate results compared to both gas-phase and Ar-matrix experimental data. This method combines the accuracy of the composite F12-TcCR energies along with the numerical stability of non-composite anharmonic terms where the non-rigid nature of aluminum bonding can be sufficiently treated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信