Wencui Li, Xin Liu, Nana Lei, Liying Liu, Xiaoting Li, Hu Ren, Jingrui Yin, Lu Zhang, Tanlai Yu, Liming Fan
{"title":"基于锌(II)有机框架的双功能生物标志物传感器用于尿液5-羟基吲哚乙酸和血清3-硝基酪氨酸的高效检测。","authors":"Wencui Li, Xin Liu, Nana Lei, Liying Liu, Xiaoting Li, Hu Ren, Jingrui Yin, Lu Zhang, Tanlai Yu, Liming Fan","doi":"10.1016/j.saa.2024.125610","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring biomarker levels in body fluids is of great importance in clinical diagnosis. Herein, a robust 3D ZnMOF, {[Zn<sub>2</sub>(BTPB)<sub>0.5</sub>(bib)<sub>1.5</sub>(μ<sub>2</sub>-OH)]·2H<sub>2</sub>O}<sub>n</sub>, was fabricated based on the ligands of 1,4-bis(2,4,6-tricarboxylpyrid-5-yl)benzene (H<sub>6</sub>BTPB) and 1,4-bis(imidazol-1-yl)benzene (bib). On the basis of its stable architecture and intrinsic luminescence, ZnMOF demonstrated remarkable potential as a bifunctional luminescent sensor for selective and sensitive detecting the biomarkers of 3-nitrotyrosine (3-NT) and 5-hydroxyindoleacetic acid (5-HIAA) in water and body fluids by employing distinct \"turn-off\" and \"turn-on\" responses. Additionally, the inherent sensing mechanism was further assessed from the viewpoints of spectral overlap and photo-induced electron transfer. This work manifested MOFs-based luminescent sensors are developing into an effective method for detecting biomarkers in body fluids with perfect practicality and compatibility.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"329 ","pages":"125610"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc(II) organic framework based bifunctional biomarker sensor for efficient detection of urinary 5-Hydroxyindoleacetic acid and serum 3-Nitrotyrosine.\",\"authors\":\"Wencui Li, Xin Liu, Nana Lei, Liying Liu, Xiaoting Li, Hu Ren, Jingrui Yin, Lu Zhang, Tanlai Yu, Liming Fan\",\"doi\":\"10.1016/j.saa.2024.125610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monitoring biomarker levels in body fluids is of great importance in clinical diagnosis. Herein, a robust 3D ZnMOF, {[Zn<sub>2</sub>(BTPB)<sub>0.5</sub>(bib)<sub>1.5</sub>(μ<sub>2</sub>-OH)]·2H<sub>2</sub>O}<sub>n</sub>, was fabricated based on the ligands of 1,4-bis(2,4,6-tricarboxylpyrid-5-yl)benzene (H<sub>6</sub>BTPB) and 1,4-bis(imidazol-1-yl)benzene (bib). On the basis of its stable architecture and intrinsic luminescence, ZnMOF demonstrated remarkable potential as a bifunctional luminescent sensor for selective and sensitive detecting the biomarkers of 3-nitrotyrosine (3-NT) and 5-hydroxyindoleacetic acid (5-HIAA) in water and body fluids by employing distinct \\\"turn-off\\\" and \\\"turn-on\\\" responses. Additionally, the inherent sensing mechanism was further assessed from the viewpoints of spectral overlap and photo-induced electron transfer. This work manifested MOFs-based luminescent sensors are developing into an effective method for detecting biomarkers in body fluids with perfect practicality and compatibility.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"329 \",\"pages\":\"125610\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2024.125610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Zinc(II) organic framework based bifunctional biomarker sensor for efficient detection of urinary 5-Hydroxyindoleacetic acid and serum 3-Nitrotyrosine.
Monitoring biomarker levels in body fluids is of great importance in clinical diagnosis. Herein, a robust 3D ZnMOF, {[Zn2(BTPB)0.5(bib)1.5(μ2-OH)]·2H2O}n, was fabricated based on the ligands of 1,4-bis(2,4,6-tricarboxylpyrid-5-yl)benzene (H6BTPB) and 1,4-bis(imidazol-1-yl)benzene (bib). On the basis of its stable architecture and intrinsic luminescence, ZnMOF demonstrated remarkable potential as a bifunctional luminescent sensor for selective and sensitive detecting the biomarkers of 3-nitrotyrosine (3-NT) and 5-hydroxyindoleacetic acid (5-HIAA) in water and body fluids by employing distinct "turn-off" and "turn-on" responses. Additionally, the inherent sensing mechanism was further assessed from the viewpoints of spectral overlap and photo-induced electron transfer. This work manifested MOFs-based luminescent sensors are developing into an effective method for detecting biomarkers in body fluids with perfect practicality and compatibility.