{"title":"RNA修饰在植物适应非生物胁迫中的作用。","authors":"Jing Cai, Ling Shen, Hunseung Kang, Tao Xu","doi":"10.1016/j.xplc.2024.101229","DOIUrl":null,"url":null,"abstract":"<p><p>Epitranscriptomic chemical modifications of RNAs have emerged as potent regulatory mechanisms in the process of plant stress adaptation. Currently, over 170 distinct chemical modifications have been identified in mRNAs, tRNAs, rRNAs, microRNAs (miRNAs), and long noncoding RNAs (lncRNAs). Genetic and molecular studies have identified the genes responsible for addition and removal of chemical modifications from RNA molecules, which are known as \"writers\" and \"erasers,\" respectively. N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most prevalent chemical modification identified in eukaryotic mRNAs. Recent studies have identified m<sup>6</sup>A writers and erasers across different plant species, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), cotton (Gossypium hirsutum), and tomato (Solanum lycopersicum). Accumulating discoveries have improved our understanding of the functions of RNA modifications in plant stress responses. This review highlights the latest research on RNA modification, emphasizing the biological and cellular roles of diverse chemical modifications of mRNAs, tRNAs, rRNAs, miRNAs, and lncRNAs in plant responses to environmental and hormonal signals. We also propose and discuss critical questions and future challenges for enhancing our understanding of the cellular and mechanistic roles of RNA modifications in plant stress responses. Integrating molecular insights into the regulatory roles of RNA modifications in stress responses with novel genome- and RNA-editing technologies will facilitate the breeding of stress-tolerant crops through precise engineering of RNA modifications.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101229"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA modifications in plant adaptation to abiotic stresses.\",\"authors\":\"Jing Cai, Ling Shen, Hunseung Kang, Tao Xu\",\"doi\":\"10.1016/j.xplc.2024.101229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epitranscriptomic chemical modifications of RNAs have emerged as potent regulatory mechanisms in the process of plant stress adaptation. Currently, over 170 distinct chemical modifications have been identified in mRNAs, tRNAs, rRNAs, microRNAs (miRNAs), and long noncoding RNAs (lncRNAs). Genetic and molecular studies have identified the genes responsible for addition and removal of chemical modifications from RNA molecules, which are known as \\\"writers\\\" and \\\"erasers,\\\" respectively. N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most prevalent chemical modification identified in eukaryotic mRNAs. Recent studies have identified m<sup>6</sup>A writers and erasers across different plant species, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), cotton (Gossypium hirsutum), and tomato (Solanum lycopersicum). Accumulating discoveries have improved our understanding of the functions of RNA modifications in plant stress responses. This review highlights the latest research on RNA modification, emphasizing the biological and cellular roles of diverse chemical modifications of mRNAs, tRNAs, rRNAs, miRNAs, and lncRNAs in plant responses to environmental and hormonal signals. We also propose and discuss critical questions and future challenges for enhancing our understanding of the cellular and mechanistic roles of RNA modifications in plant stress responses. Integrating molecular insights into the regulatory roles of RNA modifications in stress responses with novel genome- and RNA-editing technologies will facilitate the breeding of stress-tolerant crops through precise engineering of RNA modifications.</p>\",\"PeriodicalId\":52373,\"journal\":{\"name\":\"Plant Communications\",\"volume\":\" \",\"pages\":\"101229\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xplc.2024.101229\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.101229","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
RNA modifications in plant adaptation to abiotic stresses.
Epitranscriptomic chemical modifications of RNAs have emerged as potent regulatory mechanisms in the process of plant stress adaptation. Currently, over 170 distinct chemical modifications have been identified in mRNAs, tRNAs, rRNAs, microRNAs (miRNAs), and long noncoding RNAs (lncRNAs). Genetic and molecular studies have identified the genes responsible for addition and removal of chemical modifications from RNA molecules, which are known as "writers" and "erasers," respectively. N6-methyladenosine (m6A) is the most prevalent chemical modification identified in eukaryotic mRNAs. Recent studies have identified m6A writers and erasers across different plant species, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), cotton (Gossypium hirsutum), and tomato (Solanum lycopersicum). Accumulating discoveries have improved our understanding of the functions of RNA modifications in plant stress responses. This review highlights the latest research on RNA modification, emphasizing the biological and cellular roles of diverse chemical modifications of mRNAs, tRNAs, rRNAs, miRNAs, and lncRNAs in plant responses to environmental and hormonal signals. We also propose and discuss critical questions and future challenges for enhancing our understanding of the cellular and mechanistic roles of RNA modifications in plant stress responses. Integrating molecular insights into the regulatory roles of RNA modifications in stress responses with novel genome- and RNA-editing technologies will facilitate the breeding of stress-tolerant crops through precise engineering of RNA modifications.
期刊介绍:
Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.