HMGA1对SLE患者铁致Tfh细胞死亡的影响。

IF 5.3 2区 医学 Q2 CELL BIOLOGY
Shan Zhao, Xiaotong Chen, Bohan Chang, Bailing Tian
{"title":"HMGA1对SLE患者铁致Tfh细胞死亡的影响。","authors":"Shan Zhao, Xiaotong Chen, Bohan Chang, Bailing Tian","doi":"10.1007/s10565-024-09955-5","DOIUrl":null,"url":null,"abstract":"<p><p>The autoimmune disorder known as Systemic Lupus Erythematosus (SLE) exhibits intricate features with abnormal immune responses leading to tissue injury. The generation of antibodies and the disruption of immune regulation heavily depend on the pivotal function of T follicular helper (Tfh) cells. Iron dysregulation is significant in autoimmune diseases, impacting immune cell function and disease progression. Our study investigates the role of the HMGA1/EZH2/STAT3/GPX4 axis in modulating Tfh cells and iron homeostasis in SLE. Abnormal Tfh cell populations in SLE patients demonstrate reduced susceptibility to iron-induced cell death, with HMGA1 identified as a key player in Tfh cell proliferation and sensitivity to iron-induced death. Experimental interventions reveal the inhibitory role of the HMGA1 axis in Tfh cells' susceptibility to iron-induced death, suggesting therapeutic avenues for SLE and related autoimmune disorders. Our study underscores the importance of iron homeostasis in autoimmune conditions, providing novel insights and treatment strategies for further research in this field.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"6"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662042/pdf/","citationCount":"0","resultStr":"{\"title\":\"HMGA1 influence on iron-induced cell death in Tfh cells of SLE patients.\",\"authors\":\"Shan Zhao, Xiaotong Chen, Bohan Chang, Bailing Tian\",\"doi\":\"10.1007/s10565-024-09955-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The autoimmune disorder known as Systemic Lupus Erythematosus (SLE) exhibits intricate features with abnormal immune responses leading to tissue injury. The generation of antibodies and the disruption of immune regulation heavily depend on the pivotal function of T follicular helper (Tfh) cells. Iron dysregulation is significant in autoimmune diseases, impacting immune cell function and disease progression. Our study investigates the role of the HMGA1/EZH2/STAT3/GPX4 axis in modulating Tfh cells and iron homeostasis in SLE. Abnormal Tfh cell populations in SLE patients demonstrate reduced susceptibility to iron-induced cell death, with HMGA1 identified as a key player in Tfh cell proliferation and sensitivity to iron-induced death. Experimental interventions reveal the inhibitory role of the HMGA1 axis in Tfh cells' susceptibility to iron-induced death, suggesting therapeutic avenues for SLE and related autoimmune disorders. Our study underscores the importance of iron homeostasis in autoimmune conditions, providing novel insights and treatment strategies for further research in this field.</p>\",\"PeriodicalId\":9672,\"journal\":{\"name\":\"Cell Biology and Toxicology\",\"volume\":\"41 1\",\"pages\":\"6\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662042/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology and Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10565-024-09955-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09955-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

被称为系统性红斑狼疮(SLE)的自身免疫性疾病表现出复杂的特征,异常的免疫反应导致组织损伤。抗体的产生和免疫调节的破坏在很大程度上依赖于T滤泡辅助细胞(Tfh)的关键功能。铁调节失调在自身免疫性疾病中具有重要意义,影响免疫细胞功能和疾病进展。我们的研究探讨了HMGA1/EZH2/STAT3/GPX4轴在SLE中调节Tfh细胞和铁稳态中的作用。SLE患者异常的Tfh细胞群表现出对铁诱导的细胞死亡的易感性降低,HMGA1被认为是Tfh细胞增殖和对铁诱导死亡敏感性的关键参与者。实验干预揭示HMGA1轴在Tfh细胞对铁诱导死亡的易感性中的抑制作用,提示SLE和相关自身免疫性疾病的治疗途径。我们的研究强调了铁稳态在自身免疫性疾病中的重要性,为该领域的进一步研究提供了新的见解和治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HMGA1 influence on iron-induced cell death in Tfh cells of SLE patients.

The autoimmune disorder known as Systemic Lupus Erythematosus (SLE) exhibits intricate features with abnormal immune responses leading to tissue injury. The generation of antibodies and the disruption of immune regulation heavily depend on the pivotal function of T follicular helper (Tfh) cells. Iron dysregulation is significant in autoimmune diseases, impacting immune cell function and disease progression. Our study investigates the role of the HMGA1/EZH2/STAT3/GPX4 axis in modulating Tfh cells and iron homeostasis in SLE. Abnormal Tfh cell populations in SLE patients demonstrate reduced susceptibility to iron-induced cell death, with HMGA1 identified as a key player in Tfh cell proliferation and sensitivity to iron-induced death. Experimental interventions reveal the inhibitory role of the HMGA1 axis in Tfh cells' susceptibility to iron-induced death, suggesting therapeutic avenues for SLE and related autoimmune disorders. Our study underscores the importance of iron homeostasis in autoimmune conditions, providing novel insights and treatment strategies for further research in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信