Thatchawan Thanasupawat, Yared Pages Mejia, Santhosh S Anandhan, Yaxiong Guo, Jasneet Tiwana, Adline Fernando, Aleksandra Glogowska, Talia Shafai, Simone daSilva, Nimrat Kaur, Farhana Begum, Rene Zahedi, Sabine Hombach-Klonisch, Thomas Klonisch
{"title":"CTRP8-RXFP1胶质瘤小鼠模型的蛋白质组学和细胞因子分析。","authors":"Thatchawan Thanasupawat, Yared Pages Mejia, Santhosh S Anandhan, Yaxiong Guo, Jasneet Tiwana, Adline Fernando, Aleksandra Glogowska, Talia Shafai, Simone daSilva, Nimrat Kaur, Farhana Begum, Rene Zahedi, Sabine Hombach-Klonisch, Thomas Klonisch","doi":"10.1016/j.bcp.2024.116722","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GB) is the most prevalent and aggressive primary brain tumor with fatal outcome due to a lack of effective treatments. We previously identified C1q-tumor necrosis factor-related protein 8 (CTRP8), a new member of the adiponectin family, as a novel agonist of the relaxin family peptide receptor 1 (RXFP1) and showed that the CTRP8-RXFP1 ligand-receptor system facilitates increased invasiveness and chemoresistance in GB cells. In the present study, we have investigated the role of the CTRP8-RXFP1 signaling axis in glioma progression using an orthotopic mouse model xenografted with human U251 glioma cells stably expressing CTRP8 and RXFP1. Our results demonstrate that this in-vivo U251-CTRP8/RXFP1 glioma model promoted the formation of aggressive, highly proliferative glioma that resulted in significantly shorter survival times of xenografted mice. CTRP8/RXFP1 xenografts showed strongly elevated mitotic activity, increased expression of cathepsin B at the migrating front and promoted a pro-inflammatory tumor microenvironment characterized by a strong upregulation of cytokines, among them eotaxin-2 and-3, interleukin (IL)-6, IL-18 and others. Proteomic analysis of xenografted mouse brain identified both human and mouse proteome signatures unique to CTRP8/RXFP1 xenografts compared to U251 xenografts. In conclusion, our results suggest that co-expression of CTRP8 and RXFP1 promotes signaling pathways that generate unique tissue proteomic and inflammatory cytokine signatures which promote glioma aggressiveness. The CTRP-RXFP1 signaling pathway may represent an effective therapeutic target for the treatment of fast-progressing and currently untreatable GB.</p>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":" ","pages":"116722"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteomic and cytokine profiling of a CTRP8-RXFP1 glioma mouse model.\",\"authors\":\"Thatchawan Thanasupawat, Yared Pages Mejia, Santhosh S Anandhan, Yaxiong Guo, Jasneet Tiwana, Adline Fernando, Aleksandra Glogowska, Talia Shafai, Simone daSilva, Nimrat Kaur, Farhana Begum, Rene Zahedi, Sabine Hombach-Klonisch, Thomas Klonisch\",\"doi\":\"10.1016/j.bcp.2024.116722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma (GB) is the most prevalent and aggressive primary brain tumor with fatal outcome due to a lack of effective treatments. We previously identified C1q-tumor necrosis factor-related protein 8 (CTRP8), a new member of the adiponectin family, as a novel agonist of the relaxin family peptide receptor 1 (RXFP1) and showed that the CTRP8-RXFP1 ligand-receptor system facilitates increased invasiveness and chemoresistance in GB cells. In the present study, we have investigated the role of the CTRP8-RXFP1 signaling axis in glioma progression using an orthotopic mouse model xenografted with human U251 glioma cells stably expressing CTRP8 and RXFP1. Our results demonstrate that this in-vivo U251-CTRP8/RXFP1 glioma model promoted the formation of aggressive, highly proliferative glioma that resulted in significantly shorter survival times of xenografted mice. CTRP8/RXFP1 xenografts showed strongly elevated mitotic activity, increased expression of cathepsin B at the migrating front and promoted a pro-inflammatory tumor microenvironment characterized by a strong upregulation of cytokines, among them eotaxin-2 and-3, interleukin (IL)-6, IL-18 and others. Proteomic analysis of xenografted mouse brain identified both human and mouse proteome signatures unique to CTRP8/RXFP1 xenografts compared to U251 xenografts. In conclusion, our results suggest that co-expression of CTRP8 and RXFP1 promotes signaling pathways that generate unique tissue proteomic and inflammatory cytokine signatures which promote glioma aggressiveness. The CTRP-RXFP1 signaling pathway may represent an effective therapeutic target for the treatment of fast-progressing and currently untreatable GB.</p>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\" \",\"pages\":\"116722\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bcp.2024.116722\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bcp.2024.116722","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Proteomic and cytokine profiling of a CTRP8-RXFP1 glioma mouse model.
Glioblastoma (GB) is the most prevalent and aggressive primary brain tumor with fatal outcome due to a lack of effective treatments. We previously identified C1q-tumor necrosis factor-related protein 8 (CTRP8), a new member of the adiponectin family, as a novel agonist of the relaxin family peptide receptor 1 (RXFP1) and showed that the CTRP8-RXFP1 ligand-receptor system facilitates increased invasiveness and chemoresistance in GB cells. In the present study, we have investigated the role of the CTRP8-RXFP1 signaling axis in glioma progression using an orthotopic mouse model xenografted with human U251 glioma cells stably expressing CTRP8 and RXFP1. Our results demonstrate that this in-vivo U251-CTRP8/RXFP1 glioma model promoted the formation of aggressive, highly proliferative glioma that resulted in significantly shorter survival times of xenografted mice. CTRP8/RXFP1 xenografts showed strongly elevated mitotic activity, increased expression of cathepsin B at the migrating front and promoted a pro-inflammatory tumor microenvironment characterized by a strong upregulation of cytokines, among them eotaxin-2 and-3, interleukin (IL)-6, IL-18 and others. Proteomic analysis of xenografted mouse brain identified both human and mouse proteome signatures unique to CTRP8/RXFP1 xenografts compared to U251 xenografts. In conclusion, our results suggest that co-expression of CTRP8 and RXFP1 promotes signaling pathways that generate unique tissue proteomic and inflammatory cytokine signatures which promote glioma aggressiveness. The CTRP-RXFP1 signaling pathway may represent an effective therapeutic target for the treatment of fast-progressing and currently untreatable GB.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.