CHMP2B促进散发性ALS中CHMP7介导的核孔复合物损伤。

IF 6.2 2区 医学 Q1 NEUROSCIENCES
Olivia Keeley, Emma Mendoza, Druv Menon, Alyssa N Coyne
{"title":"CHMP2B促进散发性ALS中CHMP7介导的核孔复合物损伤。","authors":"Olivia Keeley, Emma Mendoza, Druv Menon, Alyssa N Coyne","doi":"10.1186/s40478-024-01916-7","DOIUrl":null,"url":null,"abstract":"<p><p>Alterations to the composition and function of neuronal nuclear pore complexes (NPCs) have been documented in multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Moreover, recent work has suggested that injury to the NPC can at least in part contribute to TDP-43 loss of function and mislocalization, a pathological hallmark of ALS and related neurodegenerative diseases. Collectively, these studies highlight a role for disruptions in NPC homeostasis and surveillance as a significant pathophysiologic event in neurodegeneration. The ESCRT-III nuclear surveillance pathway plays a critical role in the surveillance and maintenance of NPCs and the surrounding nuclear environment. Importantly, pathologic alterations to this pathway and its protein constituents have been implicated in neurodegenerative diseases such as ALS. However, the mechanism by which this pathway contributes to disease associated alterations in the NPC remains unknown. Here we use an induced pluripotent stem cell (iPSC) derived neuron (iPSN) model of sALS to demonstrate that CHMP7/ESCRT-III nuclear maintenance/surveillance is overactivated in sALS neurons. This overactivation is dependent upon the ESCRT-III protein CHMP2B and sustained CHMP2B dependent \"activation\" is sufficient to contribute to pathologic CHMP7 nuclear accumulation and POM121 reduction. Importantly, partial knockdown of CHMP2B was sufficient to alleviate NPC injury and downstream TDP-43 dysfunction in sALS neurons thereby highlighting CHMP2B as a potential therapeutic target in disease.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"199"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662732/pdf/","citationCount":"0","resultStr":"{\"title\":\"CHMP2B promotes CHMP7 mediated nuclear pore complex injury in sporadic ALS.\",\"authors\":\"Olivia Keeley, Emma Mendoza, Druv Menon, Alyssa N Coyne\",\"doi\":\"10.1186/s40478-024-01916-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alterations to the composition and function of neuronal nuclear pore complexes (NPCs) have been documented in multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Moreover, recent work has suggested that injury to the NPC can at least in part contribute to TDP-43 loss of function and mislocalization, a pathological hallmark of ALS and related neurodegenerative diseases. Collectively, these studies highlight a role for disruptions in NPC homeostasis and surveillance as a significant pathophysiologic event in neurodegeneration. The ESCRT-III nuclear surveillance pathway plays a critical role in the surveillance and maintenance of NPCs and the surrounding nuclear environment. Importantly, pathologic alterations to this pathway and its protein constituents have been implicated in neurodegenerative diseases such as ALS. However, the mechanism by which this pathway contributes to disease associated alterations in the NPC remains unknown. Here we use an induced pluripotent stem cell (iPSC) derived neuron (iPSN) model of sALS to demonstrate that CHMP7/ESCRT-III nuclear maintenance/surveillance is overactivated in sALS neurons. This overactivation is dependent upon the ESCRT-III protein CHMP2B and sustained CHMP2B dependent \\\"activation\\\" is sufficient to contribute to pathologic CHMP7 nuclear accumulation and POM121 reduction. Importantly, partial knockdown of CHMP2B was sufficient to alleviate NPC injury and downstream TDP-43 dysfunction in sALS neurons thereby highlighting CHMP2B as a potential therapeutic target in disease.</p>\",\"PeriodicalId\":6914,\"journal\":{\"name\":\"Acta Neuropathologica Communications\",\"volume\":\"12 1\",\"pages\":\"199\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662732/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40478-024-01916-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-024-01916-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

包括肌萎缩性侧索硬化症(ALS)在内的多种神经退行性疾病已证实神经元核孔复合物(npc)的组成和功能发生改变。此外,最近的研究表明,鼻咽癌损伤至少可以部分导致TDP-43功能丧失和定位错误,这是ALS和相关神经退行性疾病的病理标志。总的来说,这些研究强调了在神经退行性变中,NPC稳态和监测的破坏是一个重要的病理生理事件。ESCRT-III核监测通路在监测和维持npc及其周围核环境中起着关键作用。重要的是,该通路及其蛋白质成分的病理改变与神经退行性疾病(如ALS)有关。然而,这种途径导致鼻咽癌疾病相关改变的机制尚不清楚。在这里,我们使用诱导多能干细胞(iPSC)衍生神经元(iPSN)模型来证明CHMP7/ESCRT-III核维持/监视在sALS神经元中过度激活。这种过度激活依赖于ESCRT-III蛋白CHMP2B,持续的CHMP2B依赖性“激活”足以导致病理性CHMP7核积累和POM121减少。重要的是,部分敲低CHMP2B足以减轻NPC损伤和sALS神经元中下游TDP-43功能障碍,从而突出了CHMP2B作为疾病的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHMP2B promotes CHMP7 mediated nuclear pore complex injury in sporadic ALS.

Alterations to the composition and function of neuronal nuclear pore complexes (NPCs) have been documented in multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Moreover, recent work has suggested that injury to the NPC can at least in part contribute to TDP-43 loss of function and mislocalization, a pathological hallmark of ALS and related neurodegenerative diseases. Collectively, these studies highlight a role for disruptions in NPC homeostasis and surveillance as a significant pathophysiologic event in neurodegeneration. The ESCRT-III nuclear surveillance pathway plays a critical role in the surveillance and maintenance of NPCs and the surrounding nuclear environment. Importantly, pathologic alterations to this pathway and its protein constituents have been implicated in neurodegenerative diseases such as ALS. However, the mechanism by which this pathway contributes to disease associated alterations in the NPC remains unknown. Here we use an induced pluripotent stem cell (iPSC) derived neuron (iPSN) model of sALS to demonstrate that CHMP7/ESCRT-III nuclear maintenance/surveillance is overactivated in sALS neurons. This overactivation is dependent upon the ESCRT-III protein CHMP2B and sustained CHMP2B dependent "activation" is sufficient to contribute to pathologic CHMP7 nuclear accumulation and POM121 reduction. Importantly, partial knockdown of CHMP2B was sufficient to alleviate NPC injury and downstream TDP-43 dysfunction in sALS neurons thereby highlighting CHMP2B as a potential therapeutic target in disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Neuropathologica Communications
Acta Neuropathologica Communications Medicine-Pathology and Forensic Medicine
CiteScore
11.20
自引率
2.80%
发文量
162
审稿时长
8 weeks
期刊介绍: "Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders. ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信