{"title":"进行性脑萎缩和皮层重组与颞叶癫痫手术有关。","authors":"Wei Li, Yingjie Qin, Xiuli Li, Heng Zhang, Qiyong Gong, Dong Zhou, Dongmei An","doi":"10.1002/acn3.52285","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Epilepsy is associated with progressive cortical atrophy exceeding normal aging. We aimed to explore longitudinal cortical alterations in patients with temporal lobe epilepsy (TLE) and distinct surgery outcomes.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We obtained longitudinal T1-weighted MRI data in a well-designed cohort, including 53 operative TLE patients, 23 nonoperative TLE patients, and 23 healthy controls. According to seizure outcomes at 24 months after surgery, operative patients were divided into seizure-free (SF) and nonseizure-free (NSF) group. Operative patients were scanned before and after surgery, while nonoperative patients and healthy controls were rescanned with similar interval times. We measured gray matter volume (GMV) in all participants and compared longitudinal cortical alterations among groups.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In nonoperative group, statistically significant GMV decrease was observed in ipsilateral median cingulate and paracingulate gyri and cerebellum crus I when compared with healthy controls. In operative group, postoperative GMV increase was discovered in many regions involving bilateral hemispheres, especially in the frontal lobe, without differences between SF and NSF group. Postoperative GMV decrease was found in ipsilateral inferior frontal gyrus, putamen, thalamus, and insula. GMV decrease in ipsilateral inferior frontal gyrus, putamen, and insula was more significant in SF group.</p>\n </section>\n \n <section>\n \n <h3> Interpretation</h3>\n \n <p>Progressive cortical atrophy existed in nonoperative TLE patients. Cortical remodeling indicated by postoperative GMV increase may arise mostly from the surgery itself, rather than postsurgical seizure outcomes. More significant GMV decrease in ipsilateral inferior frontal gyrus, putamen, and insula may imply their closer connections with resected regions in seizure-free patients.</p>\n </section>\n </div>","PeriodicalId":126,"journal":{"name":"Annals of Clinical and Translational Neurology","volume":"12 2","pages":"383-392"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acn3.52285","citationCount":"0","resultStr":"{\"title\":\"Progressive brain atrophy and cortical reorganization related to surgery in temporal lobe epilepsy\",\"authors\":\"Wei Li, Yingjie Qin, Xiuli Li, Heng Zhang, Qiyong Gong, Dong Zhou, Dongmei An\",\"doi\":\"10.1002/acn3.52285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>Epilepsy is associated with progressive cortical atrophy exceeding normal aging. We aimed to explore longitudinal cortical alterations in patients with temporal lobe epilepsy (TLE) and distinct surgery outcomes.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We obtained longitudinal T1-weighted MRI data in a well-designed cohort, including 53 operative TLE patients, 23 nonoperative TLE patients, and 23 healthy controls. According to seizure outcomes at 24 months after surgery, operative patients were divided into seizure-free (SF) and nonseizure-free (NSF) group. Operative patients were scanned before and after surgery, while nonoperative patients and healthy controls were rescanned with similar interval times. We measured gray matter volume (GMV) in all participants and compared longitudinal cortical alterations among groups.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>In nonoperative group, statistically significant GMV decrease was observed in ipsilateral median cingulate and paracingulate gyri and cerebellum crus I when compared with healthy controls. In operative group, postoperative GMV increase was discovered in many regions involving bilateral hemispheres, especially in the frontal lobe, without differences between SF and NSF group. Postoperative GMV decrease was found in ipsilateral inferior frontal gyrus, putamen, thalamus, and insula. GMV decrease in ipsilateral inferior frontal gyrus, putamen, and insula was more significant in SF group.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Interpretation</h3>\\n \\n <p>Progressive cortical atrophy existed in nonoperative TLE patients. Cortical remodeling indicated by postoperative GMV increase may arise mostly from the surgery itself, rather than postsurgical seizure outcomes. More significant GMV decrease in ipsilateral inferior frontal gyrus, putamen, and insula may imply their closer connections with resected regions in seizure-free patients.</p>\\n </section>\\n </div>\",\"PeriodicalId\":126,\"journal\":{\"name\":\"Annals of Clinical and Translational Neurology\",\"volume\":\"12 2\",\"pages\":\"383-392\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acn3.52285\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Clinical and Translational Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acn3.52285\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical and Translational Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acn3.52285","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Progressive brain atrophy and cortical reorganization related to surgery in temporal lobe epilepsy
Objective
Epilepsy is associated with progressive cortical atrophy exceeding normal aging. We aimed to explore longitudinal cortical alterations in patients with temporal lobe epilepsy (TLE) and distinct surgery outcomes.
Methods
We obtained longitudinal T1-weighted MRI data in a well-designed cohort, including 53 operative TLE patients, 23 nonoperative TLE patients, and 23 healthy controls. According to seizure outcomes at 24 months after surgery, operative patients were divided into seizure-free (SF) and nonseizure-free (NSF) group. Operative patients were scanned before and after surgery, while nonoperative patients and healthy controls were rescanned with similar interval times. We measured gray matter volume (GMV) in all participants and compared longitudinal cortical alterations among groups.
Results
In nonoperative group, statistically significant GMV decrease was observed in ipsilateral median cingulate and paracingulate gyri and cerebellum crus I when compared with healthy controls. In operative group, postoperative GMV increase was discovered in many regions involving bilateral hemispheres, especially in the frontal lobe, without differences between SF and NSF group. Postoperative GMV decrease was found in ipsilateral inferior frontal gyrus, putamen, thalamus, and insula. GMV decrease in ipsilateral inferior frontal gyrus, putamen, and insula was more significant in SF group.
Interpretation
Progressive cortical atrophy existed in nonoperative TLE patients. Cortical remodeling indicated by postoperative GMV increase may arise mostly from the surgery itself, rather than postsurgical seizure outcomes. More significant GMV decrease in ipsilateral inferior frontal gyrus, putamen, and insula may imply their closer connections with resected regions in seizure-free patients.
期刊介绍:
Annals of Clinical and Translational Neurology is a peer-reviewed journal for rapid dissemination of high-quality research related to all areas of neurology. The journal publishes original research and scholarly reviews focused on the mechanisms and treatments of diseases of the nervous system; high-impact topics in neurologic education; and other topics of interest to the clinical neuroscience community.