预测药物-聚合物固体分散体稳定性的高通量微阵列方法。

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Pharmaceutics Pub Date : 2025-01-06 Epub Date: 2024-12-21 DOI:10.1021/acs.molpharmaceut.4c00955
Noha F Ghazi, Jonathan C Burley, Ian L Dryden, Clive J Roberts
{"title":"预测药物-聚合物固体分散体稳定性的高通量微阵列方法。","authors":"Noha F Ghazi, Jonathan C Burley, Ian L Dryden, Clive J Roberts","doi":"10.1021/acs.molpharmaceut.4c00955","DOIUrl":null,"url":null,"abstract":"<p><p>Amorphous solid dispersions (ASDs) offer a well-recognized strategy to improve the effective solubility and, hence, bioavailability of poorly soluble drugs. In this study, we developed an extensive library of a significant number of solid dispersion formulations using a library of chemically diverse drugs combined with a water-soluble polymer (polyvinylpyrrolidone vinyl acetate, PVPVA) at different loadings. These formulations were printed as microarrays of solid dispersion formulations, utilizing minimal material amounts (nanograms). They were subjected to a six-month stability study under accelerated conditions (40 °C and 75% relative humidity). Physical stability outcomes varied significantly among the different drug-polymer combinations, with stability ranging from immediate drug crystallization to several days of stability. The comprehensive data set obtained from this high-throughput screening was used to construct multiple linear regression models to correlate the stability of ASDs with the physicochemical properties of the used Active Pharmaceutical Ingredients (APIs). Our findings reveal that increased stability of ASDs is associated with a lower number of hydrogen bond acceptors alongside a higher overall count of heteroatoms and oxygen atoms in the drug molecules. This suggests that, while heteroatoms and oxygen are abundant, their role as hydrogen bond acceptors is limited due to their specific chemical environments, contributing to overall stability. Additionally, drugs with lower melting points formed more stable ASDs within the polymer matrix. This study, hence, highlights the importance of minimizing repulsive drug-polymer interactions to yield a physically stable ASD. The developed models, validated through Leave-One-Out Cross-Validation, demonstrated good predictability of stability trends. Hence, the high-throughput 2D inkjet printing technique that was used to manufacture the microarrays proved valuable for assessing drug-polymer crystallization onset risks and predicting stability outcomes. In conclusion, this study demonstrates a novel approach to solid dispersion formulation physical stability screening, enhancing efficiency, minimizing material requirements, and expanding the range of samples evaluated. Our findings provide insights into the critical physicochemical properties influencing ASD stability, offering a significant advancement in developing stable ASDs.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"343-362"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707727/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-Throughput Microarray Approaches for Predicting the Stability of Drug-Polymer Solid Dispersions.\",\"authors\":\"Noha F Ghazi, Jonathan C Burley, Ian L Dryden, Clive J Roberts\",\"doi\":\"10.1021/acs.molpharmaceut.4c00955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amorphous solid dispersions (ASDs) offer a well-recognized strategy to improve the effective solubility and, hence, bioavailability of poorly soluble drugs. In this study, we developed an extensive library of a significant number of solid dispersion formulations using a library of chemically diverse drugs combined with a water-soluble polymer (polyvinylpyrrolidone vinyl acetate, PVPVA) at different loadings. These formulations were printed as microarrays of solid dispersion formulations, utilizing minimal material amounts (nanograms). They were subjected to a six-month stability study under accelerated conditions (40 °C and 75% relative humidity). Physical stability outcomes varied significantly among the different drug-polymer combinations, with stability ranging from immediate drug crystallization to several days of stability. The comprehensive data set obtained from this high-throughput screening was used to construct multiple linear regression models to correlate the stability of ASDs with the physicochemical properties of the used Active Pharmaceutical Ingredients (APIs). Our findings reveal that increased stability of ASDs is associated with a lower number of hydrogen bond acceptors alongside a higher overall count of heteroatoms and oxygen atoms in the drug molecules. This suggests that, while heteroatoms and oxygen are abundant, their role as hydrogen bond acceptors is limited due to their specific chemical environments, contributing to overall stability. Additionally, drugs with lower melting points formed more stable ASDs within the polymer matrix. This study, hence, highlights the importance of minimizing repulsive drug-polymer interactions to yield a physically stable ASD. The developed models, validated through Leave-One-Out Cross-Validation, demonstrated good predictability of stability trends. Hence, the high-throughput 2D inkjet printing technique that was used to manufacture the microarrays proved valuable for assessing drug-polymer crystallization onset risks and predicting stability outcomes. In conclusion, this study demonstrates a novel approach to solid dispersion formulation physical stability screening, enhancing efficiency, minimizing material requirements, and expanding the range of samples evaluated. Our findings provide insights into the critical physicochemical properties influencing ASD stability, offering a significant advancement in developing stable ASDs.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"343-362\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707727/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c00955\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00955","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

无定形固体分散体(ASDs)是一种公认的提高难溶性药物的有效溶解度和生物利用度的方法。在这项研究中,我们开发了大量的固体分散制剂库,使用化学上不同的药物库与不同负载的水溶性聚合物(聚乙烯吡咯烷酮醋酸乙烯酯,PVPVA)结合。这些配方被印刷成固体分散配方的微阵列,利用最小的材料量(纳克)。它们在加速条件下(40°C和75%相对湿度)进行了为期6个月的稳定性研究。物理稳定性结果在不同的药物-聚合物组合中差异很大,稳定性从药物立即结晶到几天的稳定性不等。利用高通量筛选获得的综合数据集构建多元线性回归模型,将asd的稳定性与所用活性药物成分(api)的理化性质联系起来。我们的研究结果表明,asd稳定性的提高与药物分子中氢键受体数量的减少以及杂原子和氧原子总数的增加有关。这表明,虽然杂原子和氧丰富,但由于其特定的化学环境,它们作为氢键受体的作用有限,有助于整体稳定性。此外,熔点较低的药物在聚合物基质内形成更稳定的asd。因此,这项研究强调了最小化排斥药物-聚合物相互作用以产生物理稳定的ASD的重要性。所建立的模型,通过留一交叉验证验证,显示出良好的可预测性的稳定性趋势。因此,用于制造微阵列的高通量二维喷墨打印技术在评估药物聚合物结晶发生风险和预测稳定性结果方面证明是有价值的。总之,本研究展示了一种新的固体分散配方物理稳定性筛选方法,提高了效率,减少了材料需求,扩大了评估样品的范围。我们的发现提供了对影响ASD稳定性的关键物理化学性质的见解,为开发稳定的ASD提供了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Throughput Microarray Approaches for Predicting the Stability of Drug-Polymer Solid Dispersions.

Amorphous solid dispersions (ASDs) offer a well-recognized strategy to improve the effective solubility and, hence, bioavailability of poorly soluble drugs. In this study, we developed an extensive library of a significant number of solid dispersion formulations using a library of chemically diverse drugs combined with a water-soluble polymer (polyvinylpyrrolidone vinyl acetate, PVPVA) at different loadings. These formulations were printed as microarrays of solid dispersion formulations, utilizing minimal material amounts (nanograms). They were subjected to a six-month stability study under accelerated conditions (40 °C and 75% relative humidity). Physical stability outcomes varied significantly among the different drug-polymer combinations, with stability ranging from immediate drug crystallization to several days of stability. The comprehensive data set obtained from this high-throughput screening was used to construct multiple linear regression models to correlate the stability of ASDs with the physicochemical properties of the used Active Pharmaceutical Ingredients (APIs). Our findings reveal that increased stability of ASDs is associated with a lower number of hydrogen bond acceptors alongside a higher overall count of heteroatoms and oxygen atoms in the drug molecules. This suggests that, while heteroatoms and oxygen are abundant, their role as hydrogen bond acceptors is limited due to their specific chemical environments, contributing to overall stability. Additionally, drugs with lower melting points formed more stable ASDs within the polymer matrix. This study, hence, highlights the importance of minimizing repulsive drug-polymer interactions to yield a physically stable ASD. The developed models, validated through Leave-One-Out Cross-Validation, demonstrated good predictability of stability trends. Hence, the high-throughput 2D inkjet printing technique that was used to manufacture the microarrays proved valuable for assessing drug-polymer crystallization onset risks and predicting stability outcomes. In conclusion, this study demonstrates a novel approach to solid dispersion formulation physical stability screening, enhancing efficiency, minimizing material requirements, and expanding the range of samples evaluated. Our findings provide insights into the critical physicochemical properties influencing ASD stability, offering a significant advancement in developing stable ASDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信