无5环平面图的邻积区分全着色

IF 0.8 3区 数学 Q2 MATHEMATICS
Meng Ying Shi, Li Zhang
{"title":"无5环平面图的邻积区分全着色","authors":"Meng Ying Shi,&nbsp;Li Zhang","doi":"10.1007/s10114-024-2622-3","DOIUrl":null,"url":null,"abstract":"<div><p>Given a simple graph <i>G</i> and a proper total-<i>k</i>-coloring <i>φ</i> from <i>V</i> (<i>G</i>) ∪ <i>E(G)</i> to {<i>1, 2</i>,…,<i>k</i>}. Let <i>f</i>(<i>v</i>) = <i>φ</i>(<i>v</i>)Π<sub><i>uv</i>∈<i>E(G)</i></sub><i>φ</i>(<i>uv</i>). The coloring <i>φ</i> is neighbor product distinguishing if <i>f</i>(<i>u</i>) ≠ <i>f</i>(<i>v</i>) for each edge <i>uv</i> ∈ <i>E</i>(<i>G</i>). The neighbor product distinguishing total chromatic number of <i>G</i>, denoted by <span>\\(\\chi_{\\Pi}^{\\prime\\prime}(G)\\)</span>, is the smallest integer <i>k</i> such that <i>G</i> admits a <i>k</i>-neighbor product distinguishing total coloring. Li et al. conjectured that <span>\\(\\chi_{\\Pi}^{\\prime\\prime}(G)\\leq \\Delta(G)+3\\)</span> for any graph with at least two vertices. Dong et al. showed that conjecture holds for planar graphs with maximum degree at least 10. By using the famous Combinatorial Nullstellensatz, we prove that if <i>G</i> is a planar graph without 5-cycles, then <span>\\(\\chi_{\\Pi}^{\\prime\\prime}(G)\\leq \\max\\{\\Delta(G)+2,12\\}\\)</span>.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 12","pages":"2904 - 2920"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighbor Product Distinguishing Total Coloring of Planar Graphs without 5-cycles\",\"authors\":\"Meng Ying Shi,&nbsp;Li Zhang\",\"doi\":\"10.1007/s10114-024-2622-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a simple graph <i>G</i> and a proper total-<i>k</i>-coloring <i>φ</i> from <i>V</i> (<i>G</i>) ∪ <i>E(G)</i> to {<i>1, 2</i>,…,<i>k</i>}. Let <i>f</i>(<i>v</i>) = <i>φ</i>(<i>v</i>)Π<sub><i>uv</i>∈<i>E(G)</i></sub><i>φ</i>(<i>uv</i>). The coloring <i>φ</i> is neighbor product distinguishing if <i>f</i>(<i>u</i>) ≠ <i>f</i>(<i>v</i>) for each edge <i>uv</i> ∈ <i>E</i>(<i>G</i>). The neighbor product distinguishing total chromatic number of <i>G</i>, denoted by <span>\\\\(\\\\chi_{\\\\Pi}^{\\\\prime\\\\prime}(G)\\\\)</span>, is the smallest integer <i>k</i> such that <i>G</i> admits a <i>k</i>-neighbor product distinguishing total coloring. Li et al. conjectured that <span>\\\\(\\\\chi_{\\\\Pi}^{\\\\prime\\\\prime}(G)\\\\leq \\\\Delta(G)+3\\\\)</span> for any graph with at least two vertices. Dong et al. showed that conjecture holds for planar graphs with maximum degree at least 10. By using the famous Combinatorial Nullstellensatz, we prove that if <i>G</i> is a planar graph without 5-cycles, then <span>\\\\(\\\\chi_{\\\\Pi}^{\\\\prime\\\\prime}(G)\\\\leq \\\\max\\\\{\\\\Delta(G)+2,12\\\\}\\\\)</span>.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 12\",\"pages\":\"2904 - 2920\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2622-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2622-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个简单图G和一个从V (G)∪E(G)到{1,2,…,k的全k染色φ}。设f(v) = φ(v)Πuv∈E(G)φ(uv)。对于每条边uv∈E(G),着色φ是区分f(u)≠f(v)的邻积。G的邻积可区分全着色数,记为\(\chi_{\Pi}^{\prime\prime}(G)\),是使G允许有k个邻积可区分全着色的最小整数k。Li等人推测\(\chi_{\Pi}^{\prime\prime}(G)\leq \Delta(G)+3\)对于任何至少有两个顶点的图。Dong等人证明,对于最大度至少为10的平面图,猜想成立。利用著名的组合Nullstellensatz,证明了如果G是一个无5环的平面图,则\(\chi_{\Pi}^{\prime\prime}(G)\leq \max\{\Delta(G)+2,12\}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neighbor Product Distinguishing Total Coloring of Planar Graphs without 5-cycles

Given a simple graph G and a proper total-k-coloring φ from V (G) ∪ E(G) to {1, 2,…,k}. Let f(v) = φ(vuvE(G)φ(uv). The coloring φ is neighbor product distinguishing if f(u) ≠ f(v) for each edge uvE(G). The neighbor product distinguishing total chromatic number of G, denoted by \(\chi_{\Pi}^{\prime\prime}(G)\), is the smallest integer k such that G admits a k-neighbor product distinguishing total coloring. Li et al. conjectured that \(\chi_{\Pi}^{\prime\prime}(G)\leq \Delta(G)+3\) for any graph with at least two vertices. Dong et al. showed that conjecture holds for planar graphs with maximum degree at least 10. By using the famous Combinatorial Nullstellensatz, we prove that if G is a planar graph without 5-cycles, then \(\chi_{\Pi}^{\prime\prime}(G)\leq \max\{\Delta(G)+2,12\}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信