{"title":"无5环平面图的邻积区分全着色","authors":"Meng Ying Shi, Li Zhang","doi":"10.1007/s10114-024-2622-3","DOIUrl":null,"url":null,"abstract":"<div><p>Given a simple graph <i>G</i> and a proper total-<i>k</i>-coloring <i>φ</i> from <i>V</i> (<i>G</i>) ∪ <i>E(G)</i> to {<i>1, 2</i>,…,<i>k</i>}. Let <i>f</i>(<i>v</i>) = <i>φ</i>(<i>v</i>)Π<sub><i>uv</i>∈<i>E(G)</i></sub><i>φ</i>(<i>uv</i>). The coloring <i>φ</i> is neighbor product distinguishing if <i>f</i>(<i>u</i>) ≠ <i>f</i>(<i>v</i>) for each edge <i>uv</i> ∈ <i>E</i>(<i>G</i>). The neighbor product distinguishing total chromatic number of <i>G</i>, denoted by <span>\\(\\chi_{\\Pi}^{\\prime\\prime}(G)\\)</span>, is the smallest integer <i>k</i> such that <i>G</i> admits a <i>k</i>-neighbor product distinguishing total coloring. Li et al. conjectured that <span>\\(\\chi_{\\Pi}^{\\prime\\prime}(G)\\leq \\Delta(G)+3\\)</span> for any graph with at least two vertices. Dong et al. showed that conjecture holds for planar graphs with maximum degree at least 10. By using the famous Combinatorial Nullstellensatz, we prove that if <i>G</i> is a planar graph without 5-cycles, then <span>\\(\\chi_{\\Pi}^{\\prime\\prime}(G)\\leq \\max\\{\\Delta(G)+2,12\\}\\)</span>.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 12","pages":"2904 - 2920"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighbor Product Distinguishing Total Coloring of Planar Graphs without 5-cycles\",\"authors\":\"Meng Ying Shi, Li Zhang\",\"doi\":\"10.1007/s10114-024-2622-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a simple graph <i>G</i> and a proper total-<i>k</i>-coloring <i>φ</i> from <i>V</i> (<i>G</i>) ∪ <i>E(G)</i> to {<i>1, 2</i>,…,<i>k</i>}. Let <i>f</i>(<i>v</i>) = <i>φ</i>(<i>v</i>)Π<sub><i>uv</i>∈<i>E(G)</i></sub><i>φ</i>(<i>uv</i>). The coloring <i>φ</i> is neighbor product distinguishing if <i>f</i>(<i>u</i>) ≠ <i>f</i>(<i>v</i>) for each edge <i>uv</i> ∈ <i>E</i>(<i>G</i>). The neighbor product distinguishing total chromatic number of <i>G</i>, denoted by <span>\\\\(\\\\chi_{\\\\Pi}^{\\\\prime\\\\prime}(G)\\\\)</span>, is the smallest integer <i>k</i> such that <i>G</i> admits a <i>k</i>-neighbor product distinguishing total coloring. Li et al. conjectured that <span>\\\\(\\\\chi_{\\\\Pi}^{\\\\prime\\\\prime}(G)\\\\leq \\\\Delta(G)+3\\\\)</span> for any graph with at least two vertices. Dong et al. showed that conjecture holds for planar graphs with maximum degree at least 10. By using the famous Combinatorial Nullstellensatz, we prove that if <i>G</i> is a planar graph without 5-cycles, then <span>\\\\(\\\\chi_{\\\\Pi}^{\\\\prime\\\\prime}(G)\\\\leq \\\\max\\\\{\\\\Delta(G)+2,12\\\\}\\\\)</span>.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 12\",\"pages\":\"2904 - 2920\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2622-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2622-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Neighbor Product Distinguishing Total Coloring of Planar Graphs without 5-cycles
Given a simple graph G and a proper total-k-coloring φ from V (G) ∪ E(G) to {1, 2,…,k}. Let f(v) = φ(v)Πuv∈E(G)φ(uv). The coloring φ is neighbor product distinguishing if f(u) ≠ f(v) for each edge uv ∈ E(G). The neighbor product distinguishing total chromatic number of G, denoted by \(\chi_{\Pi}^{\prime\prime}(G)\), is the smallest integer k such that G admits a k-neighbor product distinguishing total coloring. Li et al. conjectured that \(\chi_{\Pi}^{\prime\prime}(G)\leq \Delta(G)+3\) for any graph with at least two vertices. Dong et al. showed that conjecture holds for planar graphs with maximum degree at least 10. By using the famous Combinatorial Nullstellensatz, we prove that if G is a planar graph without 5-cycles, then \(\chi_{\Pi}^{\prime\prime}(G)\leq \max\{\Delta(G)+2,12\}\).
期刊介绍:
Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.