重新审视SGTE热容数据的零开尔文扩展:结合经典拟合多项式与德拜-爱因斯坦函数

IF 1.5 4区 材料科学 Q4 CHEMISTRY, PHYSICAL
Ernst Gamsjäger, Manfred Wiessner
{"title":"重新审视SGTE热容数据的零开尔文扩展:结合经典拟合多项式与德拜-爱因斯坦函数","authors":"Ernst Gamsjäger,&nbsp;Manfred Wiessner","doi":"10.1007/s11669-024-01159-y","DOIUrl":null,"url":null,"abstract":"<div><p>It is demonstrated in this work that a four parameter Debye–Einstein integral is an excellent fitting function for heat capacity values of pure elements from zero Kelvin to room temperature provided that there are no phase transformations in this temperature range. The standard errors of the four parameters of the Debye–Einstein approach are provided. As examples the temperature dependent molar heat capacities of Fe, Al, Ag and Au are calculated in the temperature range from 0 to 300 K. Standard molar entropies, enthalpies and values of a molar Gibbs energy related function are derived from the molar heat capacities and the values are compared to literature data. The next goal focuses on a seamless transition of these low temperature heat capacities to SGTE (Scientific Group Thermodata Europe) unary data. This can be achieved by penalyzing deviations in the heat capacity values and in their temperature derivatives at the transition point. Whereas the constrained heat capacities of Fe and Al mimic the experimental data, the calculated values deviate considerably in case of Ag and Au. As an alternative a smooth transition in the heat capacities and the temperature derivative is achieved by a switch function employed close to the transition region.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 6","pages":"1194 - 1205"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11669-024-01159-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Extension of SGTE Heat Capacity Data to Zero Kelvin: Combining Classical Fit Polynomials with Debye–Einstein Functions\",\"authors\":\"Ernst Gamsjäger,&nbsp;Manfred Wiessner\",\"doi\":\"10.1007/s11669-024-01159-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is demonstrated in this work that a four parameter Debye–Einstein integral is an excellent fitting function for heat capacity values of pure elements from zero Kelvin to room temperature provided that there are no phase transformations in this temperature range. The standard errors of the four parameters of the Debye–Einstein approach are provided. As examples the temperature dependent molar heat capacities of Fe, Al, Ag and Au are calculated in the temperature range from 0 to 300 K. Standard molar entropies, enthalpies and values of a molar Gibbs energy related function are derived from the molar heat capacities and the values are compared to literature data. The next goal focuses on a seamless transition of these low temperature heat capacities to SGTE (Scientific Group Thermodata Europe) unary data. This can be achieved by penalyzing deviations in the heat capacity values and in their temperature derivatives at the transition point. Whereas the constrained heat capacities of Fe and Al mimic the experimental data, the calculated values deviate considerably in case of Ag and Au. As an alternative a smooth transition in the heat capacities and the temperature derivative is achieved by a switch function employed close to the transition region.</p></div>\",\"PeriodicalId\":657,\"journal\":{\"name\":\"Journal of Phase Equilibria and Diffusion\",\"volume\":\"45 6\",\"pages\":\"1194 - 1205\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11669-024-01159-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phase Equilibria and Diffusion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11669-024-01159-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phase Equilibria and Diffusion","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11669-024-01159-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了四参数德拜-爱因斯坦积分是纯元素从零开尔文到室温的热容值的一个很好的拟合函数,只要在此温度范围内没有相变。给出了德拜-爱因斯坦方法的四个参数的标准误差。作为例子,计算了Fe、Al、Ag和Au在0 ~ 300 K温度范围内的摩尔热容。由摩尔热容导出了标准摩尔熵、焓和摩尔吉布斯能相关函数的值,并与文献数据进行了比较。下一个目标是将这些低温热容无缝转换为SGTE(欧洲科学集团热数据)一元数据。这可以通过对热容值及其在过渡点的温度导数的偏差进行惩罚来实现。Fe和Al的约束热容与实验数据相似,而Ag和Au的约束热容的计算值相差很大。作为一种替代方案,热容和温度导数的平滑过渡是通过在过渡区域附近使用开关函数来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the Extension of SGTE Heat Capacity Data to Zero Kelvin: Combining Classical Fit Polynomials with Debye–Einstein Functions

It is demonstrated in this work that a four parameter Debye–Einstein integral is an excellent fitting function for heat capacity values of pure elements from zero Kelvin to room temperature provided that there are no phase transformations in this temperature range. The standard errors of the four parameters of the Debye–Einstein approach are provided. As examples the temperature dependent molar heat capacities of Fe, Al, Ag and Au are calculated in the temperature range from 0 to 300 K. Standard molar entropies, enthalpies and values of a molar Gibbs energy related function are derived from the molar heat capacities and the values are compared to literature data. The next goal focuses on a seamless transition of these low temperature heat capacities to SGTE (Scientific Group Thermodata Europe) unary data. This can be achieved by penalyzing deviations in the heat capacity values and in their temperature derivatives at the transition point. Whereas the constrained heat capacities of Fe and Al mimic the experimental data, the calculated values deviate considerably in case of Ag and Au. As an alternative a smooth transition in the heat capacities and the temperature derivative is achieved by a switch function employed close to the transition region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Phase Equilibria and Diffusion
Journal of Phase Equilibria and Diffusion 工程技术-材料科学:综合
CiteScore
2.50
自引率
7.10%
发文量
70
审稿时长
1 months
期刊介绍: The most trusted journal for phase equilibria and thermodynamic research, ASM International''s Journal of Phase Equilibria and Diffusion features critical phase diagram evaluations on scientifically and industrially important alloy systems, authored by international experts. The Journal of Phase Equilibria and Diffusion is critically reviewed and contains basic and applied research results, a survey of current literature and other pertinent articles. The journal covers the significance of diagrams as well as new research techniques, equipment, data evaluation, nomenclature, presentation and other aspects of phase diagram preparation and use. Content includes information on phenomena such as kinetic control of equilibrium, coherency effects, impurity effects, and thermodynamic and crystallographic characteristics. The journal updates systems previously published in the Bulletin of Alloy Phase Diagrams as new data are discovered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信