Arif Ali, Igor Moreira de Almeida, Emanuel Paula Magalhães, Jesyka Macedo Guedes, Francisco Ferdinando Mesquita Cajazeiras, Marcia Machado Marinho, Emmanuel Silva Marinho, Ramon Róseo Paula Pessoa Bezerra de Menezes, Tiago Lima Sampaio, Hélcio Silva Dos Santos, Geraldo Bezerra da Silva Júnior, Alice Maria Costa Martins
{"title":"Bioprospecting hydroxylated chalcones in <i>in vitro</i> model of ischemia-reoxygenation and probing NOX4 interactions via molecular docking.","authors":"Arif Ali, Igor Moreira de Almeida, Emanuel Paula Magalhães, Jesyka Macedo Guedes, Francisco Ferdinando Mesquita Cajazeiras, Marcia Machado Marinho, Emmanuel Silva Marinho, Ramon Róseo Paula Pessoa Bezerra de Menezes, Tiago Lima Sampaio, Hélcio Silva Dos Santos, Geraldo Bezerra da Silva Júnior, Alice Maria Costa Martins","doi":"10.1515/hsz-2024-0068","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemia/reperfusion injury (I/R) is a leading cause of acute kidney injury (AKI) in conditions like kidney transplants, cardiac surgeries, and nephrectomy, contributing to high global mortality and morbidity. This study aimed to analyze the protective effects of 2'-hydroxychalcones in treating I/R-induced AKI by targeting key pathological pathways. Considering strong antioxidant action along with other pharmacological roles of chalcone derivatives, six 2'-hydroxychalcones were synthesized via Claisen-Schmidt condensation and analyzed for their protective effects in an I/R induced AKI model using HK-2 cells. Among six 2'-hydroxychalcones, chalcone A4 significantly increased the HK-2 cells viability compared to I/R group. Chalcone A4 reduced the cell death events by reducing generation of cytoplasmic ROS and mitochondrial transmembrane potential. It also increased GSH and SOD activity while reducing TBARS levels, indicating strong antioxidant action. Scanning electron microscope images showed that chalcone A4 reversed I/R-induced morphological changes in HK-2 cells, including apoptotic blebbing and cytoplasmic fragmentation. Furthermore, <i>in silico</i> studies revealed interactions with NADPH oxidase 4, further supporting its protective role in I/R-induced AKI. These results showed that chalcone A4 possess potential protective action against I/R induced cellular damage possibly due to its strong antioxidant action and potential interaction with NOX4 subunit of NADPH oxidase.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2024-0068","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bioprospecting hydroxylated chalcones in in vitro model of ischemia-reoxygenation and probing NOX4 interactions via molecular docking.
Ischemia/reperfusion injury (I/R) is a leading cause of acute kidney injury (AKI) in conditions like kidney transplants, cardiac surgeries, and nephrectomy, contributing to high global mortality and morbidity. This study aimed to analyze the protective effects of 2'-hydroxychalcones in treating I/R-induced AKI by targeting key pathological pathways. Considering strong antioxidant action along with other pharmacological roles of chalcone derivatives, six 2'-hydroxychalcones were synthesized via Claisen-Schmidt condensation and analyzed for their protective effects in an I/R induced AKI model using HK-2 cells. Among six 2'-hydroxychalcones, chalcone A4 significantly increased the HK-2 cells viability compared to I/R group. Chalcone A4 reduced the cell death events by reducing generation of cytoplasmic ROS and mitochondrial transmembrane potential. It also increased GSH and SOD activity while reducing TBARS levels, indicating strong antioxidant action. Scanning electron microscope images showed that chalcone A4 reversed I/R-induced morphological changes in HK-2 cells, including apoptotic blebbing and cytoplasmic fragmentation. Furthermore, in silico studies revealed interactions with NADPH oxidase 4, further supporting its protective role in I/R-induced AKI. These results showed that chalcone A4 possess potential protective action against I/R induced cellular damage possibly due to its strong antioxidant action and potential interaction with NOX4 subunit of NADPH oxidase.
期刊介绍:
Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.