{"title":"增强低聚噻吩荧光性能的呋喃取代和环融合策略","authors":"Yaoxuan Zhang, Xiping Zhu, Shaohui Zheng","doi":"10.1002/qua.27528","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Oligothiophenes have attracted a lot of attention due to their excellent photoelectric properties. However, the effects of ring fusion and furan substitution on the optoelectrical properties of oligothiophenes are still unclear. In this study, based on popular pentathiophene, eight molecules including three ring-fused and five furan-substituted derivatives are systematically designed, and their frontier molecular orbitals, dipole moments, planarity, exciton binding energy (<i>E</i><sub>b</sub>), singlet-triplet energy differences, and fluorescence quantum yields are calculated. The computed data demonstrate that full-ring fusion and two- and more-furan substitutions can greatly enhance the fluorescence quantum yields. Five potential molecules with about 100% of fluorescence quantum yield, i.e., TTTTT, SOSOS, OSOSO, SOOOS, and OOOOO, are screened. The results show that to obtain high fluorescence quantum yield, high <i>E</i><sub>b</sub> is required, and the flexible torsional displacement during the excitation from ground to the first excited state should be removed as much as possible. This work sheds some light on the future design of high-performance oligothiophene-based fluorescent materials.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Furan Substitution and Ring Fusion Strategies for Enhancing the Fluorescence Performance of Oligothiophene\",\"authors\":\"Yaoxuan Zhang, Xiping Zhu, Shaohui Zheng\",\"doi\":\"10.1002/qua.27528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Oligothiophenes have attracted a lot of attention due to their excellent photoelectric properties. However, the effects of ring fusion and furan substitution on the optoelectrical properties of oligothiophenes are still unclear. In this study, based on popular pentathiophene, eight molecules including three ring-fused and five furan-substituted derivatives are systematically designed, and their frontier molecular orbitals, dipole moments, planarity, exciton binding energy (<i>E</i><sub>b</sub>), singlet-triplet energy differences, and fluorescence quantum yields are calculated. The computed data demonstrate that full-ring fusion and two- and more-furan substitutions can greatly enhance the fluorescence quantum yields. Five potential molecules with about 100% of fluorescence quantum yield, i.e., TTTTT, SOSOS, OSOSO, SOOOS, and OOOOO, are screened. The results show that to obtain high fluorescence quantum yield, high <i>E</i><sub>b</sub> is required, and the flexible torsional displacement during the excitation from ground to the first excited state should be removed as much as possible. This work sheds some light on the future design of high-performance oligothiophene-based fluorescent materials.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27528\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27528","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Furan Substitution and Ring Fusion Strategies for Enhancing the Fluorescence Performance of Oligothiophene
Oligothiophenes have attracted a lot of attention due to their excellent photoelectric properties. However, the effects of ring fusion and furan substitution on the optoelectrical properties of oligothiophenes are still unclear. In this study, based on popular pentathiophene, eight molecules including three ring-fused and five furan-substituted derivatives are systematically designed, and their frontier molecular orbitals, dipole moments, planarity, exciton binding energy (Eb), singlet-triplet energy differences, and fluorescence quantum yields are calculated. The computed data demonstrate that full-ring fusion and two- and more-furan substitutions can greatly enhance the fluorescence quantum yields. Five potential molecules with about 100% of fluorescence quantum yield, i.e., TTTTT, SOSOS, OSOSO, SOOOS, and OOOOO, are screened. The results show that to obtain high fluorescence quantum yield, high Eb is required, and the flexible torsional displacement during the excitation from ground to the first excited state should be removed as much as possible. This work sheds some light on the future design of high-performance oligothiophene-based fluorescent materials.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.