Yunjie Xia, Mengnan Sun, Li Zhang, Shuyan Qi, Yaru Jia, Zihou Li, Mingkun Wang, Shunxiang Li, Aiguo Wu, Bo Chen
{"title":"基于仿生的玫瑰花瓣微纳层次结构在SERS传感中的应用","authors":"Yunjie Xia, Mengnan Sun, Li Zhang, Shuyan Qi, Yaru Jia, Zihou Li, Mingkun Wang, Shunxiang Li, Aiguo Wu, Bo Chen","doi":"10.1002/adom.202401657","DOIUrl":null,"url":null,"abstract":"<p>Surface-enhanced Raman spectroscopy (SERS) detection is a crucial technology for rapid sensing and “fingerprinting”, achieved through the combination of Raman spectroscopy and arrays of noble metal nanoparticles (NPs). This study introduces a low-cost biomimetic-inspired approach to fabricate rose petal structured micro/nano hierarchical structures with silver (Ag) film, serving as a reliable SERS substrate. These substrates are thoroughly compared by replicating the upper surface of rose petals of different colors into a transparent polydimethylsiloxane (PDMS) mixture and subsequently sputtering Ag film of varying thicknesses. Ultimately, the white negative rose PDMS replica is chosen, demonstrating a high enhancement factor, good batch-to-batch reproducibility, high stability, and high sensitivity for crystal violet (CV), an organic contaminant with mutagenic and toxigenic properties. In a proof-of-concept experiment, the multiplex detection capability of this SERS substrate is demonstrated by analyzing a combination of two sets of analytes (CV and methylene blue as well as CV and Nile blue A). Furthermore, this SERS substrate is utilized to test tau protein and amyloid β peptides, both recognized biomarkers of Alzheimer's disease. This study illustrates that the proposed 3D SERS substrate exhibits significant potential for the highly sensitive and rapid detection of biomolecules in practical applications.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 36","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetically Inspired Micro-Nano Hierarchical Structures of Rose Petals for Efficient SERS Sensing Applications\",\"authors\":\"Yunjie Xia, Mengnan Sun, Li Zhang, Shuyan Qi, Yaru Jia, Zihou Li, Mingkun Wang, Shunxiang Li, Aiguo Wu, Bo Chen\",\"doi\":\"10.1002/adom.202401657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surface-enhanced Raman spectroscopy (SERS) detection is a crucial technology for rapid sensing and “fingerprinting”, achieved through the combination of Raman spectroscopy and arrays of noble metal nanoparticles (NPs). This study introduces a low-cost biomimetic-inspired approach to fabricate rose petal structured micro/nano hierarchical structures with silver (Ag) film, serving as a reliable SERS substrate. These substrates are thoroughly compared by replicating the upper surface of rose petals of different colors into a transparent polydimethylsiloxane (PDMS) mixture and subsequently sputtering Ag film of varying thicknesses. Ultimately, the white negative rose PDMS replica is chosen, demonstrating a high enhancement factor, good batch-to-batch reproducibility, high stability, and high sensitivity for crystal violet (CV), an organic contaminant with mutagenic and toxigenic properties. In a proof-of-concept experiment, the multiplex detection capability of this SERS substrate is demonstrated by analyzing a combination of two sets of analytes (CV and methylene blue as well as CV and Nile blue A). Furthermore, this SERS substrate is utilized to test tau protein and amyloid β peptides, both recognized biomarkers of Alzheimer's disease. This study illustrates that the proposed 3D SERS substrate exhibits significant potential for the highly sensitive and rapid detection of biomolecules in practical applications.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"12 36\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401657\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401657","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Biomimetically Inspired Micro-Nano Hierarchical Structures of Rose Petals for Efficient SERS Sensing Applications
Surface-enhanced Raman spectroscopy (SERS) detection is a crucial technology for rapid sensing and “fingerprinting”, achieved through the combination of Raman spectroscopy and arrays of noble metal nanoparticles (NPs). This study introduces a low-cost biomimetic-inspired approach to fabricate rose petal structured micro/nano hierarchical structures with silver (Ag) film, serving as a reliable SERS substrate. These substrates are thoroughly compared by replicating the upper surface of rose petals of different colors into a transparent polydimethylsiloxane (PDMS) mixture and subsequently sputtering Ag film of varying thicknesses. Ultimately, the white negative rose PDMS replica is chosen, demonstrating a high enhancement factor, good batch-to-batch reproducibility, high stability, and high sensitivity for crystal violet (CV), an organic contaminant with mutagenic and toxigenic properties. In a proof-of-concept experiment, the multiplex detection capability of this SERS substrate is demonstrated by analyzing a combination of two sets of analytes (CV and methylene blue as well as CV and Nile blue A). Furthermore, this SERS substrate is utilized to test tau protein and amyloid β peptides, both recognized biomarkers of Alzheimer's disease. This study illustrates that the proposed 3D SERS substrate exhibits significant potential for the highly sensitive and rapid detection of biomolecules in practical applications.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.