基于多维干涉反演的多尺度虚拟波场波形反演

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xujia Shang;Liguo Han;Pan Zhang
{"title":"基于多维干涉反演的多尺度虚拟波场波形反演","authors":"Xujia Shang;Liguo Han;Pan Zhang","doi":"10.1109/TGRS.2024.3520645","DOIUrl":null,"url":null,"abstract":"Full waveform inversion (FWI) seeks a subsurface parameter model that optimally matches the true state by minimizing the differences between synthetic and observed data. However, when starting from a rough initial model, FWI is often limited by the weak low-frequency energy of the observed data and the difficulty of matching surface-related multiples (SRMs), especially when the source wavelet is not readily available. Source wavelet errors also affect the general inversion result. We propose a multiscale virtual wavefield waveform inversion (VWWI) based on multidimensional interferometric retrieval (MDIR) to mitigate these challenges. We use MDIR to retrieve the virtual response from the up- and down-going wavefields separated from the original data and infer the velocity using the virtual response instead of the original data. MDIR integrates the source functions using multidimensional cross correlation (MDCC) and then suppresses the source imprints from the original data through multidimensional deconvolution (MDD). The retrieved virtual responses have a broader bandwidth and are dominated by primary reflection events. It addresses simultaneously three major challenges that FWI faces through a one-time data retrieval. Assigning self-setting source functions with different dominant frequencies to the virtual response allows the extraction of virtual observed data to different frequency bands for multiscale velocity inversion. Considering the possible amplitude distortion and the computational cost, we propose the hybrid source cross-correlation objective function adapted to VWWI. Numerical examples of well-known models representing weak and strong scattering media show that the proposed VWWI method can stably achieve wide-scale velocity modeling from macroscopic background to delicate structures.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-19"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Virtual Wavefield Waveform Inversion Based on Multidimensional Interferometric Retrieval\",\"authors\":\"Xujia Shang;Liguo Han;Pan Zhang\",\"doi\":\"10.1109/TGRS.2024.3520645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Full waveform inversion (FWI) seeks a subsurface parameter model that optimally matches the true state by minimizing the differences between synthetic and observed data. However, when starting from a rough initial model, FWI is often limited by the weak low-frequency energy of the observed data and the difficulty of matching surface-related multiples (SRMs), especially when the source wavelet is not readily available. Source wavelet errors also affect the general inversion result. We propose a multiscale virtual wavefield waveform inversion (VWWI) based on multidimensional interferometric retrieval (MDIR) to mitigate these challenges. We use MDIR to retrieve the virtual response from the up- and down-going wavefields separated from the original data and infer the velocity using the virtual response instead of the original data. MDIR integrates the source functions using multidimensional cross correlation (MDCC) and then suppresses the source imprints from the original data through multidimensional deconvolution (MDD). The retrieved virtual responses have a broader bandwidth and are dominated by primary reflection events. It addresses simultaneously three major challenges that FWI faces through a one-time data retrieval. Assigning self-setting source functions with different dominant frequencies to the virtual response allows the extraction of virtual observed data to different frequency bands for multiscale velocity inversion. Considering the possible amplitude distortion and the computational cost, we propose the hybrid source cross-correlation objective function adapted to VWWI. Numerical examples of well-known models representing weak and strong scattering media show that the proposed VWWI method can stably achieve wide-scale velocity modeling from macroscopic background to delicate structures.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":\"63 \",\"pages\":\"1-19\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10810432/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10810432/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

全波形反演(FWI)通过最小化合成数据和观测数据之间的差异,寻求最符合真实状态的地下参数模型。然而,当从一个粗糙的初始模型开始时,FWI往往受到观测数据的弱低频能量和难以匹配表面相关倍数(srm)的限制,特别是当源小波不容易获得时。源小波误差也会影响一般反演结果。我们提出了一种基于多维干涉反演(MDIR)的多尺度虚拟波场波形反演(VWWI)来缓解这些挑战。我们使用MDIR从与原始数据分离的上下波场中检索虚拟响应,并使用虚拟响应而不是原始数据来推断速度。MDIR利用多维互相关(MDCC)对源函数进行集成,然后通过多维反褶积(MDD)对原始数据的源印记进行抑制。检索到的虚拟响应具有更宽的带宽,并且由主反射事件主导。它通过一次性数据检索同时解决了FWI面临的三大挑战。为虚拟响应分配不同主导频率的自定源函数,可以将虚拟观测数据提取到不同频带进行多尺度速度反演。考虑到可能存在的幅度失真和计算成本,提出了一种适用于VWWI的混合源互相关目标函数。基于弱散射介质和强散射介质的知名模型的数值算例表明,该方法可以稳定地实现从宏观背景到精细结构的大尺度速度建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Virtual Wavefield Waveform Inversion Based on Multidimensional Interferometric Retrieval
Full waveform inversion (FWI) seeks a subsurface parameter model that optimally matches the true state by minimizing the differences between synthetic and observed data. However, when starting from a rough initial model, FWI is often limited by the weak low-frequency energy of the observed data and the difficulty of matching surface-related multiples (SRMs), especially when the source wavelet is not readily available. Source wavelet errors also affect the general inversion result. We propose a multiscale virtual wavefield waveform inversion (VWWI) based on multidimensional interferometric retrieval (MDIR) to mitigate these challenges. We use MDIR to retrieve the virtual response from the up- and down-going wavefields separated from the original data and infer the velocity using the virtual response instead of the original data. MDIR integrates the source functions using multidimensional cross correlation (MDCC) and then suppresses the source imprints from the original data through multidimensional deconvolution (MDD). The retrieved virtual responses have a broader bandwidth and are dominated by primary reflection events. It addresses simultaneously three major challenges that FWI faces through a one-time data retrieval. Assigning self-setting source functions with different dominant frequencies to the virtual response allows the extraction of virtual observed data to different frequency bands for multiscale velocity inversion. Considering the possible amplitude distortion and the computational cost, we propose the hybrid source cross-correlation objective function adapted to VWWI. Numerical examples of well-known models representing weak and strong scattering media show that the proposed VWWI method can stably achieve wide-scale velocity modeling from macroscopic background to delicate structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信