Naïve贝叶斯分类器++用于宏基因组分类-查询评估。

Haozhe Neil Duan, Gavin Hearne, Robi Polikar, Gail L Rosen
{"title":"Naïve贝叶斯分类器++用于宏基因组分类-查询评估。","authors":"Haozhe Neil Duan, Gavin Hearne, Robi Polikar, Gail L Rosen","doi":"10.1093/bioinformatics/btae743","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>This study examines the query performance of the NBC++ (Incremental Naive Bayes Classifier) program for variations in canonicality, k-mer size, databases, and input sample data size. We demonstrate that both NBC++ and Kraken2 are influenced by database depth, with macro measures improving as depth increases. However, fully capturing the diversity of life, especially viruses, remains a challenge.</p><p><strong>Results: </strong>NBC++ can competitively profile the superkingdom content of metagenomic samples using a small training database. NBC++ spends less time training and can use a fraction of the memory than Kraken2 but at the cost of long querying time. Major NBC++ enhancements include accommodating canonical k-mer storage (leading to significant storage savings) and adaptable and optimized memory allocation that accelerates query analysis and enables the software to be run on nearly any system. Additionally, the output now includes log-likelihood values for each training genome, providing users with valuable confidence information.</p><p><strong>Availability and implementation: </strong>Source code and Dockerfile are available at http://github.com/EESI/Naive_Bayes.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729721/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Naïve Bayes classifier++ for metagenomic taxonomic classification-query evaluation.\",\"authors\":\"Haozhe Neil Duan, Gavin Hearne, Robi Polikar, Gail L Rosen\",\"doi\":\"10.1093/bioinformatics/btae743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>This study examines the query performance of the NBC++ (Incremental Naive Bayes Classifier) program for variations in canonicality, k-mer size, databases, and input sample data size. We demonstrate that both NBC++ and Kraken2 are influenced by database depth, with macro measures improving as depth increases. However, fully capturing the diversity of life, especially viruses, remains a challenge.</p><p><strong>Results: </strong>NBC++ can competitively profile the superkingdom content of metagenomic samples using a small training database. NBC++ spends less time training and can use a fraction of the memory than Kraken2 but at the cost of long querying time. Major NBC++ enhancements include accommodating canonical k-mer storage (leading to significant storage savings) and adaptable and optimized memory allocation that accelerates query analysis and enables the software to be run on nearly any system. Additionally, the output now includes log-likelihood values for each training genome, providing users with valuable confidence information.</p><p><strong>Availability and implementation: </strong>Source code and Dockerfile are available at http://github.com/EESI/Naive_Bayes.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729721/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:本研究考察了NBC ++(增量朴素贝叶斯分类器)程序在规范性、k-mer大小、数据库和输入样本数据大小变化方面的查询性能。我们证明了nbc++和Kraken2都受到数据库深度的影响,宏观指标随着深度的增加而改善。然而,充分捕捉生命的多样性,特别是病毒的多样性,仍然是一项挑战。结果:nbc++可以利用一个小的训练数据库竞争性地分析宏基因组样本的超王国内容。与Kraken2相比,nbc++花在训练上的时间更少,可以使用一小部分内存,但代价是查询时间更长。nbc++的主要增强包括适应规范的k-mer存储(导致显著的存储节省),以及可适应和优化的内存分配,从而加速查询分析,并使软件几乎可以在任何系统上运行。此外,输出现在包括每个训练基因组的对数似然值,为用户提供有价值的信心信息。可用性:源代码和Dockerfile可在http://github.com/EESI/Naive_Bayes.Supplementary信息:补充数据可在Bioinformatics在线,数据库可在Zenodo记录#11657719和#11643985。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Naïve Bayes classifier++ for metagenomic taxonomic classification-query evaluation.

Motivation: This study examines the query performance of the NBC++ (Incremental Naive Bayes Classifier) program for variations in canonicality, k-mer size, databases, and input sample data size. We demonstrate that both NBC++ and Kraken2 are influenced by database depth, with macro measures improving as depth increases. However, fully capturing the diversity of life, especially viruses, remains a challenge.

Results: NBC++ can competitively profile the superkingdom content of metagenomic samples using a small training database. NBC++ spends less time training and can use a fraction of the memory than Kraken2 but at the cost of long querying time. Major NBC++ enhancements include accommodating canonical k-mer storage (leading to significant storage savings) and adaptable and optimized memory allocation that accelerates query analysis and enables the software to be run on nearly any system. Additionally, the output now includes log-likelihood values for each training genome, providing users with valuable confidence information.

Availability and implementation: Source code and Dockerfile are available at http://github.com/EESI/Naive_Bayes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信