Lamprini Banou, Soshian Sarrafpour, Christopher C Teng, Ji Liu
{"title":"眼部基因治疗:病毒载体、免疫反应和未来方向综述。","authors":"Lamprini Banou, Soshian Sarrafpour, Christopher C Teng, Ji Liu","doi":"10.59249/HWID7537","DOIUrl":null,"url":null,"abstract":"<p><p>Ocular gene therapy has rapidly advanced from proof-of-concept studies to clinical trials by exploiting the unique advantages of the eye, including its easy accessibility, relative immune privilege, and the ability to use the contralateral eye as a control. An important step forward was achieved with the Food and Drug Administration (FDA) approval of voretigene neparvovec (Luxturna) for the treatment of biallelic RPE65-mutation-associated retinal dystrophies in 2017. Gene therapy is a promising field aimed at treating various inherited and acquired eye diseases. Viral vectors such as adeno-associated virus (AAV) are mainly used to efficiently deliver genes. Despite the immune-privileged status of the eye, viral vector-based therapies can induce immune responses, potentially leading to gene therapy-associated uveitis. Future directions include developing strategies to reduce immune responses while maintaining therapeutic efficacy, optimizing vector selection, and improving delivery techniques. Continued advances in the field of viral vectors, particularly AAV, are expanding the potential applications of gene therapy to treat a variety of ocular diseases. To fully realize the potential of ocular gene therapy, more research and clinical trials are needed to improve these methods, ensure safe and efficient treatments, and ultimately overcome existing obstacles.</p>","PeriodicalId":48617,"journal":{"name":"Yale Journal of Biology and Medicine","volume":"97 4","pages":"491-503"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650918/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ocular Gene Therapy: An Overview of Viral Vectors, Immune Responses, and Future Directions.\",\"authors\":\"Lamprini Banou, Soshian Sarrafpour, Christopher C Teng, Ji Liu\",\"doi\":\"10.59249/HWID7537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ocular gene therapy has rapidly advanced from proof-of-concept studies to clinical trials by exploiting the unique advantages of the eye, including its easy accessibility, relative immune privilege, and the ability to use the contralateral eye as a control. An important step forward was achieved with the Food and Drug Administration (FDA) approval of voretigene neparvovec (Luxturna) for the treatment of biallelic RPE65-mutation-associated retinal dystrophies in 2017. Gene therapy is a promising field aimed at treating various inherited and acquired eye diseases. Viral vectors such as adeno-associated virus (AAV) are mainly used to efficiently deliver genes. Despite the immune-privileged status of the eye, viral vector-based therapies can induce immune responses, potentially leading to gene therapy-associated uveitis. Future directions include developing strategies to reduce immune responses while maintaining therapeutic efficacy, optimizing vector selection, and improving delivery techniques. Continued advances in the field of viral vectors, particularly AAV, are expanding the potential applications of gene therapy to treat a variety of ocular diseases. To fully realize the potential of ocular gene therapy, more research and clinical trials are needed to improve these methods, ensure safe and efficient treatments, and ultimately overcome existing obstacles.</p>\",\"PeriodicalId\":48617,\"journal\":{\"name\":\"Yale Journal of Biology and Medicine\",\"volume\":\"97 4\",\"pages\":\"491-503\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650918/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yale Journal of Biology and Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.59249/HWID7537\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yale Journal of Biology and Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.59249/HWID7537","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Ocular Gene Therapy: An Overview of Viral Vectors, Immune Responses, and Future Directions.
Ocular gene therapy has rapidly advanced from proof-of-concept studies to clinical trials by exploiting the unique advantages of the eye, including its easy accessibility, relative immune privilege, and the ability to use the contralateral eye as a control. An important step forward was achieved with the Food and Drug Administration (FDA) approval of voretigene neparvovec (Luxturna) for the treatment of biallelic RPE65-mutation-associated retinal dystrophies in 2017. Gene therapy is a promising field aimed at treating various inherited and acquired eye diseases. Viral vectors such as adeno-associated virus (AAV) are mainly used to efficiently deliver genes. Despite the immune-privileged status of the eye, viral vector-based therapies can induce immune responses, potentially leading to gene therapy-associated uveitis. Future directions include developing strategies to reduce immune responses while maintaining therapeutic efficacy, optimizing vector selection, and improving delivery techniques. Continued advances in the field of viral vectors, particularly AAV, are expanding the potential applications of gene therapy to treat a variety of ocular diseases. To fully realize the potential of ocular gene therapy, more research and clinical trials are needed to improve these methods, ensure safe and efficient treatments, and ultimately overcome existing obstacles.
期刊介绍:
The Yale Journal of Biology and Medicine (YJBM) is a graduate and medical student-run, peer-reviewed, open-access journal dedicated to the publication of original research articles, scientific reviews, articles on medical history, personal perspectives on medicine, policy analyses, case reports, and symposia related to biomedical matters. YJBM is published quarterly and aims to publish articles of interest to both physicians and scientists. YJBM is and has been an internationally distributed journal with a long history of landmark articles. Our contributors feature a notable list of philosophers, statesmen, scientists, and physicians, including Ernst Cassirer, Harvey Cushing, Rene Dubos, Edward Kennedy, Donald Seldin, and Jack Strominger. Our Editorial Board consists of students and faculty members from Yale School of Medicine and Yale University Graduate School of Arts & Sciences. All manuscripts submitted to YJBM are first evaluated on the basis of scientific quality, originality, appropriateness, contribution to the field, and style. Suitable manuscripts are then subject to rigorous, fair, and rapid peer review.