PyNetCor:用于大规模相关分析的高性能 Python 软件包。

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-12-18 eCollection Date: 2024-12-01 DOI:10.1093/nargab/lqae177
Shibin Long, Yan Xia, Lifeng Liang, Ying Yang, Hailiang Xie, Xiaokai Wang
{"title":"PyNetCor:用于大规模相关分析的高性能 Python 软件包。","authors":"Shibin Long, Yan Xia, Lifeng Liang, Ying Yang, Hailiang Xie, Xiaokai Wang","doi":"10.1093/nargab/lqae177","DOIUrl":null,"url":null,"abstract":"<p><p>The development of multi-omics technologies has generated an abundance of biological datasets, providing valuable resources for investigating potential relationships within complex biological systems. However, most correlation analysis tools face computational challenges when dealing with these high-dimensional datasets containing millions of features. Here, we introduce pyNetCor, a fast and scalable tool for constructing correlation networks on large-scale and high-dimensional data. PyNetCor features optimized algorithms for both full correlation coefficient matrix computation and top-k correlation search, outperforming other tools in the field in terms of runtime and memory consumption. It utilizes a linear interpolation strategy to rapidly estimate <i>P-</i>values and achieve false discovery rate control, demonstrating a speedup of over 110 times compared to existing methods. Overall, pyNetCor supports large-scale correlation analysis, a crucial foundational step for various bioinformatics workflows, and can be easily integrated into downstream applications to accelerate the process of extracting biological insights from data.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae177"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655297/pdf/","citationCount":"0","resultStr":"{\"title\":\"PyNetCor: a high-performance Python package for large-scale correlation analysis.\",\"authors\":\"Shibin Long, Yan Xia, Lifeng Liang, Ying Yang, Hailiang Xie, Xiaokai Wang\",\"doi\":\"10.1093/nargab/lqae177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of multi-omics technologies has generated an abundance of biological datasets, providing valuable resources for investigating potential relationships within complex biological systems. However, most correlation analysis tools face computational challenges when dealing with these high-dimensional datasets containing millions of features. Here, we introduce pyNetCor, a fast and scalable tool for constructing correlation networks on large-scale and high-dimensional data. PyNetCor features optimized algorithms for both full correlation coefficient matrix computation and top-k correlation search, outperforming other tools in the field in terms of runtime and memory consumption. It utilizes a linear interpolation strategy to rapidly estimate <i>P-</i>values and achieve false discovery rate control, demonstrating a speedup of over 110 times compared to existing methods. Overall, pyNetCor supports large-scale correlation analysis, a crucial foundational step for various bioinformatics workflows, and can be easily integrated into downstream applications to accelerate the process of extracting biological insights from data.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"6 4\",\"pages\":\"lqae177\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655297/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqae177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
PyNetCor: a high-performance Python package for large-scale correlation analysis.

The development of multi-omics technologies has generated an abundance of biological datasets, providing valuable resources for investigating potential relationships within complex biological systems. However, most correlation analysis tools face computational challenges when dealing with these high-dimensional datasets containing millions of features. Here, we introduce pyNetCor, a fast and scalable tool for constructing correlation networks on large-scale and high-dimensional data. PyNetCor features optimized algorithms for both full correlation coefficient matrix computation and top-k correlation search, outperforming other tools in the field in terms of runtime and memory consumption. It utilizes a linear interpolation strategy to rapidly estimate P-values and achieve false discovery rate control, demonstrating a speedup of over 110 times compared to existing methods. Overall, pyNetCor supports large-scale correlation analysis, a crucial foundational step for various bioinformatics workflows, and can be easily integrated into downstream applications to accelerate the process of extracting biological insights from data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信