近似近邻图提供快速高效的嵌入,可应用于大规模生物数据。

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-12-18 eCollection Date: 2024-12-01 DOI:10.1093/nargab/lqae172
Jianshu Zhao, Jean Pierre Both, Konstantinos T Konstantinidis
{"title":"近似近邻图提供快速高效的嵌入,可应用于大规模生物数据。","authors":"Jianshu Zhao, Jean Pierre Both, Konstantinos T Konstantinidis","doi":"10.1093/nargab/lqae172","DOIUrl":null,"url":null,"abstract":"<p><p>Dimension reduction (DR or embedding) algorithms such as t-SNE and UMAP have many applications in big data visualization but remain slow for large datasets. Here, we further improve the UMAP-like algorithms by (i) combining several aspects of t-SNE and UMAP to create a new DR algorithm; (ii) replacing its rate-limiting step, the K-nearest neighbor graph (K-NNG), with a Hierarchical Navigable Small World (HNSW) graph; and (iii) extending the functionality to DNA/RNA sequence data by combining HNSW with locality sensitive hashing algorithms (e.g. MinHash) for distance estimations among sequences. We also provide additional features including computation of local intrinsic dimension and hubness, which can reflect structures and properties of the underlying data that strongly affect the K-NNG accuracy, and thus the quality of the resulting embeddings. Our library, called annembed, is implemented, and fully parallelized in Rust and shows competitive accuracy compared to the popular UMAP-like algorithms. Additionally, we showcase the usefulness and scalability of our library with three real-world examples: visualizing a large-scale microbial genomic database, visualizing single-cell RNA sequencing data and metagenomic contig (or population) binning. Therefore, annembed can facilitate DR for several tasks for biological data analysis where distance computation is expensive or when there are millions to billions of data points to process.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae172"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655291/pdf/","citationCount":"0","resultStr":"{\"title\":\"Approximate nearest neighbor graph provides fast and efficient embedding with applications for large-scale biological data.\",\"authors\":\"Jianshu Zhao, Jean Pierre Both, Konstantinos T Konstantinidis\",\"doi\":\"10.1093/nargab/lqae172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dimension reduction (DR or embedding) algorithms such as t-SNE and UMAP have many applications in big data visualization but remain slow for large datasets. Here, we further improve the UMAP-like algorithms by (i) combining several aspects of t-SNE and UMAP to create a new DR algorithm; (ii) replacing its rate-limiting step, the K-nearest neighbor graph (K-NNG), with a Hierarchical Navigable Small World (HNSW) graph; and (iii) extending the functionality to DNA/RNA sequence data by combining HNSW with locality sensitive hashing algorithms (e.g. MinHash) for distance estimations among sequences. We also provide additional features including computation of local intrinsic dimension and hubness, which can reflect structures and properties of the underlying data that strongly affect the K-NNG accuracy, and thus the quality of the resulting embeddings. Our library, called annembed, is implemented, and fully parallelized in Rust and shows competitive accuracy compared to the popular UMAP-like algorithms. Additionally, we showcase the usefulness and scalability of our library with three real-world examples: visualizing a large-scale microbial genomic database, visualizing single-cell RNA sequencing data and metagenomic contig (or population) binning. Therefore, annembed can facilitate DR for several tasks for biological data analysis where distance computation is expensive or when there are millions to billions of data points to process.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"6 4\",\"pages\":\"lqae172\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655291/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqae172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate nearest neighbor graph provides fast and efficient embedding with applications for large-scale biological data.

Dimension reduction (DR or embedding) algorithms such as t-SNE and UMAP have many applications in big data visualization but remain slow for large datasets. Here, we further improve the UMAP-like algorithms by (i) combining several aspects of t-SNE and UMAP to create a new DR algorithm; (ii) replacing its rate-limiting step, the K-nearest neighbor graph (K-NNG), with a Hierarchical Navigable Small World (HNSW) graph; and (iii) extending the functionality to DNA/RNA sequence data by combining HNSW with locality sensitive hashing algorithms (e.g. MinHash) for distance estimations among sequences. We also provide additional features including computation of local intrinsic dimension and hubness, which can reflect structures and properties of the underlying data that strongly affect the K-NNG accuracy, and thus the quality of the resulting embeddings. Our library, called annembed, is implemented, and fully parallelized in Rust and shows competitive accuracy compared to the popular UMAP-like algorithms. Additionally, we showcase the usefulness and scalability of our library with three real-world examples: visualizing a large-scale microbial genomic database, visualizing single-cell RNA sequencing data and metagenomic contig (or population) binning. Therefore, annembed can facilitate DR for several tasks for biological data analysis where distance computation is expensive or when there are millions to billions of data points to process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信