Rebecca Grzadzinski, Kattia Mata, Ambika S Bhatt, Alapika Jatkar, Dea Garic, Mark D Shen, Jessica B Girault, Tanya St John, Juhi Pandey, Lonnie Zwaigenbaum, Annette Estes, Audrey M Shen, Stephen Dager, Robert Schultz, Kelly Botteron, Natasha Marrus, Martin Styner, Alan Evans, Sun Hyung Kim, Robert McKinstry, Guido Gerig, Joseph Piven, Heather Hazlett
{"title":"学龄唐氏综合症儿童的脑容量、认知和适应能力。","authors":"Rebecca Grzadzinski, Kattia Mata, Ambika S Bhatt, Alapika Jatkar, Dea Garic, Mark D Shen, Jessica B Girault, Tanya St John, Juhi Pandey, Lonnie Zwaigenbaum, Annette Estes, Audrey M Shen, Stephen Dager, Robert Schultz, Kelly Botteron, Natasha Marrus, Martin Styner, Alan Evans, Sun Hyung Kim, Robert McKinstry, Guido Gerig, Joseph Piven, Heather Hazlett","doi":"10.1186/s11689-024-09581-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Down syndrome (DS) is the most common congenital neurodevelopmental disorder, present in about 1 in every 700 live births. Despite its prevalence, literature exploring the neurobiology underlying DS and how this neurobiology is related to behavior is limited. This study fills this gap by examining cortical volumes and behavioral correlates in school-age children with DS.</p><p><strong>Methods: </strong>School-age children (mean = 9.7 years ± 1.1) underwent comprehensive assessments, including cognitive and adaptive assessments, as well as an MRI scan without the use of sedation. Children with DS (n = 35) were compared to available samples of typically developing (TD; n = 80) and ASD children (n = 29). ANOVAs were conducted to compare groups on cognitive and adaptive assessments. ANCOVAs (covarying for age, sex, and total cerebral volume; TCV) compared cortical brain volumes between groups. Correlations between behavioral metrics and cortical and cerebellar volumes (separately for gray (GM) and white matter (WM)) were conducted separately by group.</p><p><strong>Results: </strong>As expected, children with DS had significantly lower cognitive skills compared to ASD and TD children. Daily Living adaptive skills were comparable between ASD children and children with DS, and both groups scored lower than TD children. Children with DS exhibited a smaller TCV compared to ASD and TD children. Additionally, when controlling for TCV, age, and sex, children with DS had significantly smaller total GM and tissue volumes. Cerebellum volumes were significantly correlated with Daily Living adaptive behaviors in the DS group only.</p><p><strong>Conclusions: </strong>Despite children with DS exhibiting lower cognitive skills and smaller brain volume overall than children with ASD, their deficits in Socialization and Daily Living adaptive skills are comparable. Differences in lobar volumes (e.g., Right Frontal GM/WM, Left Frontal WM, and Left and Right Temporal WM) were observed above and beyond overall differences in total volume. The correlation between cerebellum volumes and Daily Living adaptive behaviors in the DS group provides a novel area to explore in future research.</p>","PeriodicalId":16530,"journal":{"name":"Journal of Neurodevelopmental Disorders","volume":"16 1","pages":"70"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660842/pdf/","citationCount":"0","resultStr":"{\"title\":\"Brain volumes, cognitive, and adaptive skills in school-age children with Down syndrome.\",\"authors\":\"Rebecca Grzadzinski, Kattia Mata, Ambika S Bhatt, Alapika Jatkar, Dea Garic, Mark D Shen, Jessica B Girault, Tanya St John, Juhi Pandey, Lonnie Zwaigenbaum, Annette Estes, Audrey M Shen, Stephen Dager, Robert Schultz, Kelly Botteron, Natasha Marrus, Martin Styner, Alan Evans, Sun Hyung Kim, Robert McKinstry, Guido Gerig, Joseph Piven, Heather Hazlett\",\"doi\":\"10.1186/s11689-024-09581-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Down syndrome (DS) is the most common congenital neurodevelopmental disorder, present in about 1 in every 700 live births. Despite its prevalence, literature exploring the neurobiology underlying DS and how this neurobiology is related to behavior is limited. This study fills this gap by examining cortical volumes and behavioral correlates in school-age children with DS.</p><p><strong>Methods: </strong>School-age children (mean = 9.7 years ± 1.1) underwent comprehensive assessments, including cognitive and adaptive assessments, as well as an MRI scan without the use of sedation. Children with DS (n = 35) were compared to available samples of typically developing (TD; n = 80) and ASD children (n = 29). ANOVAs were conducted to compare groups on cognitive and adaptive assessments. ANCOVAs (covarying for age, sex, and total cerebral volume; TCV) compared cortical brain volumes between groups. Correlations between behavioral metrics and cortical and cerebellar volumes (separately for gray (GM) and white matter (WM)) were conducted separately by group.</p><p><strong>Results: </strong>As expected, children with DS had significantly lower cognitive skills compared to ASD and TD children. Daily Living adaptive skills were comparable between ASD children and children with DS, and both groups scored lower than TD children. Children with DS exhibited a smaller TCV compared to ASD and TD children. Additionally, when controlling for TCV, age, and sex, children with DS had significantly smaller total GM and tissue volumes. Cerebellum volumes were significantly correlated with Daily Living adaptive behaviors in the DS group only.</p><p><strong>Conclusions: </strong>Despite children with DS exhibiting lower cognitive skills and smaller brain volume overall than children with ASD, their deficits in Socialization and Daily Living adaptive skills are comparable. Differences in lobar volumes (e.g., Right Frontal GM/WM, Left Frontal WM, and Left and Right Temporal WM) were observed above and beyond overall differences in total volume. The correlation between cerebellum volumes and Daily Living adaptive behaviors in the DS group provides a novel area to explore in future research.</p>\",\"PeriodicalId\":16530,\"journal\":{\"name\":\"Journal of Neurodevelopmental Disorders\",\"volume\":\"16 1\",\"pages\":\"70\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurodevelopmental Disorders\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s11689-024-09581-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurodevelopmental Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s11689-024-09581-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Brain volumes, cognitive, and adaptive skills in school-age children with Down syndrome.
Background: Down syndrome (DS) is the most common congenital neurodevelopmental disorder, present in about 1 in every 700 live births. Despite its prevalence, literature exploring the neurobiology underlying DS and how this neurobiology is related to behavior is limited. This study fills this gap by examining cortical volumes and behavioral correlates in school-age children with DS.
Methods: School-age children (mean = 9.7 years ± 1.1) underwent comprehensive assessments, including cognitive and adaptive assessments, as well as an MRI scan without the use of sedation. Children with DS (n = 35) were compared to available samples of typically developing (TD; n = 80) and ASD children (n = 29). ANOVAs were conducted to compare groups on cognitive and adaptive assessments. ANCOVAs (covarying for age, sex, and total cerebral volume; TCV) compared cortical brain volumes between groups. Correlations between behavioral metrics and cortical and cerebellar volumes (separately for gray (GM) and white matter (WM)) were conducted separately by group.
Results: As expected, children with DS had significantly lower cognitive skills compared to ASD and TD children. Daily Living adaptive skills were comparable between ASD children and children with DS, and both groups scored lower than TD children. Children with DS exhibited a smaller TCV compared to ASD and TD children. Additionally, when controlling for TCV, age, and sex, children with DS had significantly smaller total GM and tissue volumes. Cerebellum volumes were significantly correlated with Daily Living adaptive behaviors in the DS group only.
Conclusions: Despite children with DS exhibiting lower cognitive skills and smaller brain volume overall than children with ASD, their deficits in Socialization and Daily Living adaptive skills are comparable. Differences in lobar volumes (e.g., Right Frontal GM/WM, Left Frontal WM, and Left and Right Temporal WM) were observed above and beyond overall differences in total volume. The correlation between cerebellum volumes and Daily Living adaptive behaviors in the DS group provides a novel area to explore in future research.
期刊介绍:
Journal of Neurodevelopmental Disorders is an open access journal that integrates current, cutting-edge research across a number of disciplines, including neurobiology, genetics, cognitive neuroscience, psychiatry and psychology. The journal’s primary focus is on the pathogenesis of neurodevelopmental disorders including autism, fragile X syndrome, tuberous sclerosis, Turner Syndrome, 22q Deletion Syndrome, Prader-Willi and Angelman Syndrome, Williams syndrome, lysosomal storage diseases, dyslexia, specific language impairment and fetal alcohol syndrome. With the discovery of specific genes underlying neurodevelopmental syndromes, the emergence of powerful tools for studying neural circuitry, and the development of new approaches for exploring molecular mechanisms, interdisciplinary research on the pathogenesis of neurodevelopmental disorders is now increasingly common. Journal of Neurodevelopmental Disorders provides a unique venue for researchers interested in comparing and contrasting mechanisms and characteristics related to the pathogenesis of the full range of neurodevelopmental disorders, sharpening our understanding of the etiology and relevant phenotypes of each condition.