破坏髓细胞中Notch信号相关的HES1可激活抗肿瘤T细胞反应。

IF 9.4 1区 医学 Q1 HEMATOLOGY
Myung Sup Kim, Hyeokgu Kang, Jung-Hwan Baek, Moon-Gyu Cho, Eun Joo Chung, Seok-Jun Kim, Joon-Yong Chung, Kyung-Hee Chun
{"title":"破坏髓细胞中Notch信号相关的HES1可激活抗肿瘤T细胞反应。","authors":"Myung Sup Kim, Hyeokgu Kang, Jung-Hwan Baek, Moon-Gyu Cho, Eun Joo Chung, Seok-Jun Kim, Joon-Yong Chung, Kyung-Hee Chun","doi":"10.1186/s40164-024-00588-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tumor-associated macrophages (TAMs) are immunosuppressive cells within the tumor microenvironment (TME) that hinder anti-tumor immunity. Notch signaling is a pathway crucial for TAM differentiation and function. Here, we investigate the role of HES1, a downstream target of Notch signaling, in TAM-mediated immunosuppression and explore its potential as a target for cancer immunotherapy.</p><p><strong>Methods: </strong>In this work, we constructed conditional Hes1 knockout mice to selectively delete Hes1 in TAMs. We further analyzed the TME composition, T cell infiltration and activation, and anti-tumor effects in these mice, both alone and in combination with PD-1 checkpoint blockade.</p><p><strong>Results: </strong>Our study showed that expression levels of Notch target Hes1 were increase in TAMs and mice with conditional knockout of Hes1 gene in TAMs exhibited decreased tumor growth, with increased infiltration and activation of cytotoxic T cells in tumors. Expression of tumor promoting factors was critically altered in Hes1-conditional KO TAMs, leading to the improved tumor microenvironment. Notably, arginase-1 expression was decreased in Hes1-conditional KO mice. Arg1 is known to deplete arginine and deactivate T cells in the TME. Administration of anti-PD-1 monoclonal antibody inhibited tumor growth to a greater extent in Hes1-conditional KO mice than in WT mice.</p><p><strong>Conclusions: </strong>We identified a pivotal role for the Notch signaling pathway in shaping TAM function, suggesting that T-cell dysfunction in the TME is caused when the Notch target, HES1, in TAMs is upregulated by tumor-associated factors (TAFs), which, in turn, increases the expression of arginase-1. Targeting HES1 in TAMs appears to be a promising strategy for cancer immunotherapy.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"13 1","pages":"122"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660887/pdf/","citationCount":"0","resultStr":"{\"title\":\"Disrupting Notch signaling related HES1 in myeloid cells reinvigorates antitumor T cell responses.\",\"authors\":\"Myung Sup Kim, Hyeokgu Kang, Jung-Hwan Baek, Moon-Gyu Cho, Eun Joo Chung, Seok-Jun Kim, Joon-Yong Chung, Kyung-Hee Chun\",\"doi\":\"10.1186/s40164-024-00588-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tumor-associated macrophages (TAMs) are immunosuppressive cells within the tumor microenvironment (TME) that hinder anti-tumor immunity. Notch signaling is a pathway crucial for TAM differentiation and function. Here, we investigate the role of HES1, a downstream target of Notch signaling, in TAM-mediated immunosuppression and explore its potential as a target for cancer immunotherapy.</p><p><strong>Methods: </strong>In this work, we constructed conditional Hes1 knockout mice to selectively delete Hes1 in TAMs. We further analyzed the TME composition, T cell infiltration and activation, and anti-tumor effects in these mice, both alone and in combination with PD-1 checkpoint blockade.</p><p><strong>Results: </strong>Our study showed that expression levels of Notch target Hes1 were increase in TAMs and mice with conditional knockout of Hes1 gene in TAMs exhibited decreased tumor growth, with increased infiltration and activation of cytotoxic T cells in tumors. Expression of tumor promoting factors was critically altered in Hes1-conditional KO TAMs, leading to the improved tumor microenvironment. Notably, arginase-1 expression was decreased in Hes1-conditional KO mice. Arg1 is known to deplete arginine and deactivate T cells in the TME. Administration of anti-PD-1 monoclonal antibody inhibited tumor growth to a greater extent in Hes1-conditional KO mice than in WT mice.</p><p><strong>Conclusions: </strong>We identified a pivotal role for the Notch signaling pathway in shaping TAM function, suggesting that T-cell dysfunction in the TME is caused when the Notch target, HES1, in TAMs is upregulated by tumor-associated factors (TAFs), which, in turn, increases the expression of arginase-1. Targeting HES1 in TAMs appears to be a promising strategy for cancer immunotherapy.</p>\",\"PeriodicalId\":12180,\"journal\":{\"name\":\"Experimental Hematology & Oncology\",\"volume\":\"13 1\",\"pages\":\"122\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660887/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Hematology & Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40164-024-00588-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00588-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:肿瘤相关巨噬细胞(tumor -associated macrophages, tam)是肿瘤微环境(tumor microenvironment, TME)中的免疫抑制细胞,可阻碍抗肿瘤免疫。Notch信号是TAM分化和功能的重要途径。在这里,我们研究了Notch信号的下游靶点HES1在tam介导的免疫抑制中的作用,并探索其作为癌症免疫治疗靶点的潜力。方法:构建条件Hes1敲除小鼠,选择性删除tam中的Hes1。我们进一步分析了单独和联合PD-1检查点阻断剂对这些小鼠的TME组成、T细胞浸润和活化以及抗肿瘤作用。结果:我们的研究表明,Notch靶基因Hes1在tam中表达水平升高,有条件敲除tam中Hes1基因的小鼠肿瘤生长下降,肿瘤中细胞毒性T细胞的浸润和活化增加。在hes1条件下的KO tam中,肿瘤促进因子的表达发生了严重改变,导致肿瘤微环境的改善。值得注意的是,精氨酸酶-1在hes1条件下的KO小鼠中表达降低。Arg1已知能消耗精氨酸并使TME中的T细胞失活。与WT小鼠相比,抗pd -1单克隆抗体对hes1条件下KO小鼠肿瘤生长的抑制作用更大。结论:我们确定了Notch信号通路在TAM功能形成中的关键作用,表明当TAM中的Notch靶点HES1被肿瘤相关因子(TAFs)上调,进而增加精氨酸酶-1的表达时,TME中的t细胞功能障碍就会发生。在tam中靶向HES1似乎是一种很有前途的癌症免疫治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disrupting Notch signaling related HES1 in myeloid cells reinvigorates antitumor T cell responses.

Background: Tumor-associated macrophages (TAMs) are immunosuppressive cells within the tumor microenvironment (TME) that hinder anti-tumor immunity. Notch signaling is a pathway crucial for TAM differentiation and function. Here, we investigate the role of HES1, a downstream target of Notch signaling, in TAM-mediated immunosuppression and explore its potential as a target for cancer immunotherapy.

Methods: In this work, we constructed conditional Hes1 knockout mice to selectively delete Hes1 in TAMs. We further analyzed the TME composition, T cell infiltration and activation, and anti-tumor effects in these mice, both alone and in combination with PD-1 checkpoint blockade.

Results: Our study showed that expression levels of Notch target Hes1 were increase in TAMs and mice with conditional knockout of Hes1 gene in TAMs exhibited decreased tumor growth, with increased infiltration and activation of cytotoxic T cells in tumors. Expression of tumor promoting factors was critically altered in Hes1-conditional KO TAMs, leading to the improved tumor microenvironment. Notably, arginase-1 expression was decreased in Hes1-conditional KO mice. Arg1 is known to deplete arginine and deactivate T cells in the TME. Administration of anti-PD-1 monoclonal antibody inhibited tumor growth to a greater extent in Hes1-conditional KO mice than in WT mice.

Conclusions: We identified a pivotal role for the Notch signaling pathway in shaping TAM function, suggesting that T-cell dysfunction in the TME is caused when the Notch target, HES1, in TAMs is upregulated by tumor-associated factors (TAFs), which, in turn, increases the expression of arginase-1. Targeting HES1 in TAMs appears to be a promising strategy for cancer immunotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信