Xueyang Xie, Qingguo Yu, Xiao Li, Bo Li, Hang Wang, Yang Liu, Xu Luo, Shunxin Gao, Ziwen Yang
{"title":"中国剑湖沉积物柱中微塑料和细菌群落的垂直分布特征","authors":"Xueyang Xie, Qingguo Yu, Xiao Li, Bo Li, Hang Wang, Yang Liu, Xu Luo, Shunxin Gao, Ziwen Yang","doi":"10.1007/s10653-024-02325-4","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms change the properties of microplastics, at the same time, microplastics can also affect the distribution of microorganisms. To investigate this issue, we chose to study Jianhu Lake, a plateau lake in southwestern China, by collecting data at three sampling locations. The microplastics and bacterial communities in the sediment columns of Jianhu Lake were sampled within a 0 to 60 cm profile, and the basic characteristics of microplastic abundance, shape, color, size, and polymer type were determined accordingly, via their collection, separation, extraction, and identification. The bacterial community in the sediment samples were identified using 16S rRNA high-throughput sequencing, and we assessed whether those microplastic characteristics influenced the community composition and structure. We found the abundance of microplastics ranged from 624 to 3050 particles/kg (dw [dry weight]) in the three sediment columns. Line microplastics accounted for the largest proportion and these were found distributed in each layer. The polymer types present in the largest proportions were rayon (RY), polyester terephthalate (PET) and low-density styrene-butadiene-styrene (SBS). Among the bacterial communities in the sediment columns, the dominant phyla were Chloroflexi, Sva0485, Acidobacteriota, etc. The co-occurrence network analysis between the bacterial community and microplastic features in the sediment columns of Jianhu Lake revealed that there was a correlation between them, and the network were more complex at a depth of 20-40 cm. Our results demonstrate that microplastics can affect the diversity and structural characteristics of microbial communities in a lake ecosystem.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 1","pages":"25"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical distribution characteristics of microplastics and bacterial communities in the sediment columns of Jianhu lake in China.\",\"authors\":\"Xueyang Xie, Qingguo Yu, Xiao Li, Bo Li, Hang Wang, Yang Liu, Xu Luo, Shunxin Gao, Ziwen Yang\",\"doi\":\"10.1007/s10653-024-02325-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microorganisms change the properties of microplastics, at the same time, microplastics can also affect the distribution of microorganisms. To investigate this issue, we chose to study Jianhu Lake, a plateau lake in southwestern China, by collecting data at three sampling locations. The microplastics and bacterial communities in the sediment columns of Jianhu Lake were sampled within a 0 to 60 cm profile, and the basic characteristics of microplastic abundance, shape, color, size, and polymer type were determined accordingly, via their collection, separation, extraction, and identification. The bacterial community in the sediment samples were identified using 16S rRNA high-throughput sequencing, and we assessed whether those microplastic characteristics influenced the community composition and structure. We found the abundance of microplastics ranged from 624 to 3050 particles/kg (dw [dry weight]) in the three sediment columns. Line microplastics accounted for the largest proportion and these were found distributed in each layer. The polymer types present in the largest proportions were rayon (RY), polyester terephthalate (PET) and low-density styrene-butadiene-styrene (SBS). Among the bacterial communities in the sediment columns, the dominant phyla were Chloroflexi, Sva0485, Acidobacteriota, etc. The co-occurrence network analysis between the bacterial community and microplastic features in the sediment columns of Jianhu Lake revealed that there was a correlation between them, and the network were more complex at a depth of 20-40 cm. Our results demonstrate that microplastics can affect the diversity and structural characteristics of microbial communities in a lake ecosystem.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 1\",\"pages\":\"25\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02325-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02325-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Vertical distribution characteristics of microplastics and bacterial communities in the sediment columns of Jianhu lake in China.
Microorganisms change the properties of microplastics, at the same time, microplastics can also affect the distribution of microorganisms. To investigate this issue, we chose to study Jianhu Lake, a plateau lake in southwestern China, by collecting data at three sampling locations. The microplastics and bacterial communities in the sediment columns of Jianhu Lake were sampled within a 0 to 60 cm profile, and the basic characteristics of microplastic abundance, shape, color, size, and polymer type were determined accordingly, via their collection, separation, extraction, and identification. The bacterial community in the sediment samples were identified using 16S rRNA high-throughput sequencing, and we assessed whether those microplastic characteristics influenced the community composition and structure. We found the abundance of microplastics ranged from 624 to 3050 particles/kg (dw [dry weight]) in the three sediment columns. Line microplastics accounted for the largest proportion and these were found distributed in each layer. The polymer types present in the largest proportions were rayon (RY), polyester terephthalate (PET) and low-density styrene-butadiene-styrene (SBS). Among the bacterial communities in the sediment columns, the dominant phyla were Chloroflexi, Sva0485, Acidobacteriota, etc. The co-occurrence network analysis between the bacterial community and microplastic features in the sediment columns of Jianhu Lake revealed that there was a correlation between them, and the network were more complex at a depth of 20-40 cm. Our results demonstrate that microplastics can affect the diversity and structural characteristics of microbial communities in a lake ecosystem.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.