{"title":"CRISPR-Cas系统的综合分析及其对肠沙门氏菌耐药的影响","authors":"Tina Fallah, Morvarid Shafiei","doi":"10.1177/11779322241307984","DOIUrl":null,"url":null,"abstract":"<p><p><i>Salmonella enterica</i> is a gram-negative bacterium that demonstrates a remarkable ability to acquire antibiotic resistance genes (ARGs). The role of the CRISPR-Cas system in influencing antibiotic resistance in <i>S. enterica</i> is still under investigation. This study explores the distribution and impact of CRISPR-Cas systems on antibiotic resistance by analyzing 316 <i>S. enterica</i> genomes. We conducted sequence alignments, phylogenetic analyses, and conservation studies on Cas genes, direct repeats (DRs), and leader sequences. Promoter predictions and RNA secondary structure analyses were also performed. ARGs were identified, and their correlation with Cas gene clusters was evaluated. Our findings revealed that 82.33% of strains possess complete CRISPR-Cas systems, while 17.66% have orphan CRISPRs. We identified 290 distinct DRs, most of which formed stable stem-loop structures, although no promoter regions were detected within the leader sequences. Most spacers were chromosome-targeting, with a smaller proportion homologous to phages and plasmids. Importantly, strains with complete CRISPR-Cas systems showed a higher incidence of ARGs compared with those with orphan or no CRISPR systems. Specifically, the incidence of ARGs was 54.3% higher in strains with complete CRISPR-Cas systems than in strains without CRISPR-Cas systems, and 15.1% higher than in strains with orphan CRISPRs. Spearman's correlation analysis confirmed a statistically significant but weak correlation between the presence of Cas genes and the frequency of ARGs (<i>P</i>-value = 3.892e-06). These results suggest that CRISPR-Cas systems may play a role in the acquisition of ARGs, potentially through mutations under antibiotic pressure. Future studies should investigate mutations, particularly in <i>Cas3</i>-the signature protein of type I CRISPR-Cas systems. In addition, experimental validation, such as culturing <i>S. enterica</i> strains with complete CRISPR-Cas systems under different antibiotic conditions, followed by sequencing to assess the uptake or absence of newly acquired ARGs, would help clarify the potential role of CRISPR-Cas systems in bacterial adaptation to antimicrobial pressures.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241307984"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656426/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Analysis of CRISPR-Cas Systems and Their Influence on Antibiotic Resistance in <i>Salmonella enterica</i> Strains.\",\"authors\":\"Tina Fallah, Morvarid Shafiei\",\"doi\":\"10.1177/11779322241307984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Salmonella enterica</i> is a gram-negative bacterium that demonstrates a remarkable ability to acquire antibiotic resistance genes (ARGs). The role of the CRISPR-Cas system in influencing antibiotic resistance in <i>S. enterica</i> is still under investigation. This study explores the distribution and impact of CRISPR-Cas systems on antibiotic resistance by analyzing 316 <i>S. enterica</i> genomes. We conducted sequence alignments, phylogenetic analyses, and conservation studies on Cas genes, direct repeats (DRs), and leader sequences. Promoter predictions and RNA secondary structure analyses were also performed. ARGs were identified, and their correlation with Cas gene clusters was evaluated. Our findings revealed that 82.33% of strains possess complete CRISPR-Cas systems, while 17.66% have orphan CRISPRs. We identified 290 distinct DRs, most of which formed stable stem-loop structures, although no promoter regions were detected within the leader sequences. Most spacers were chromosome-targeting, with a smaller proportion homologous to phages and plasmids. Importantly, strains with complete CRISPR-Cas systems showed a higher incidence of ARGs compared with those with orphan or no CRISPR systems. Specifically, the incidence of ARGs was 54.3% higher in strains with complete CRISPR-Cas systems than in strains without CRISPR-Cas systems, and 15.1% higher than in strains with orphan CRISPRs. Spearman's correlation analysis confirmed a statistically significant but weak correlation between the presence of Cas genes and the frequency of ARGs (<i>P</i>-value = 3.892e-06). These results suggest that CRISPR-Cas systems may play a role in the acquisition of ARGs, potentially through mutations under antibiotic pressure. Future studies should investigate mutations, particularly in <i>Cas3</i>-the signature protein of type I CRISPR-Cas systems. In addition, experimental validation, such as culturing <i>S. enterica</i> strains with complete CRISPR-Cas systems under different antibiotic conditions, followed by sequencing to assess the uptake or absence of newly acquired ARGs, would help clarify the potential role of CRISPR-Cas systems in bacterial adaptation to antimicrobial pressures.</p>\",\"PeriodicalId\":9065,\"journal\":{\"name\":\"Bioinformatics and Biology Insights\",\"volume\":\"18 \",\"pages\":\"11779322241307984\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656426/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics and Biology Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11779322241307984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322241307984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Comprehensive Analysis of CRISPR-Cas Systems and Their Influence on Antibiotic Resistance in Salmonella enterica Strains.
Salmonella enterica is a gram-negative bacterium that demonstrates a remarkable ability to acquire antibiotic resistance genes (ARGs). The role of the CRISPR-Cas system in influencing antibiotic resistance in S. enterica is still under investigation. This study explores the distribution and impact of CRISPR-Cas systems on antibiotic resistance by analyzing 316 S. enterica genomes. We conducted sequence alignments, phylogenetic analyses, and conservation studies on Cas genes, direct repeats (DRs), and leader sequences. Promoter predictions and RNA secondary structure analyses were also performed. ARGs were identified, and their correlation with Cas gene clusters was evaluated. Our findings revealed that 82.33% of strains possess complete CRISPR-Cas systems, while 17.66% have orphan CRISPRs. We identified 290 distinct DRs, most of which formed stable stem-loop structures, although no promoter regions were detected within the leader sequences. Most spacers were chromosome-targeting, with a smaller proportion homologous to phages and plasmids. Importantly, strains with complete CRISPR-Cas systems showed a higher incidence of ARGs compared with those with orphan or no CRISPR systems. Specifically, the incidence of ARGs was 54.3% higher in strains with complete CRISPR-Cas systems than in strains without CRISPR-Cas systems, and 15.1% higher than in strains with orphan CRISPRs. Spearman's correlation analysis confirmed a statistically significant but weak correlation between the presence of Cas genes and the frequency of ARGs (P-value = 3.892e-06). These results suggest that CRISPR-Cas systems may play a role in the acquisition of ARGs, potentially through mutations under antibiotic pressure. Future studies should investigate mutations, particularly in Cas3-the signature protein of type I CRISPR-Cas systems. In addition, experimental validation, such as culturing S. enterica strains with complete CRISPR-Cas systems under different antibiotic conditions, followed by sequencing to assess the uptake or absence of newly acquired ARGs, would help clarify the potential role of CRISPR-Cas systems in bacterial adaptation to antimicrobial pressures.
期刊介绍:
Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.