探索 CTRP6:代谢性疾病的生物标记物和治疗靶标。

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Jeevotham Senthil Kumar, Muhammad Zubair Mehboob, Xia Lei
{"title":"探索 CTRP6:代谢性疾病的生物标记物和治疗靶标。","authors":"Jeevotham Senthil Kumar, Muhammad Zubair Mehboob, Xia Lei","doi":"10.1152/ajpendo.00353.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The rising prevalence of metabolic diseases is a significant global health concern. Beyond lifestyle management, targeting key molecules involved in metabolic regulation is essential. C1q/TNF-related protein 6 (CTRP6) is notably associated with glucose and lipid metabolism, with numerous studies highlighting its regulatory functions in metabolic diseases. This review summarizes the current knowledge on CTRP6, focusing on its gene expression profiles, protein structure, gene regulation, and role in metabolic diseases. CTRP6 is widely expressed across various tissues and features four distinct domains, with the C1q domain predicted to bind to its receptor. Notably, serum levels of CTRP6 are significantly elevated in patients with obesity and type 2 diabetes. In these conditions, adipose tissue serves as a key source of CTRP6 and its involvement in adipose tissue expansion, inflammation, and nutrient sensing has been observed in several studies. CTRP6 is also implicated in type 1 diabetes, gestational diabetes mellitus, and diabetic complications, particularly diabetic nephropathy. Although some studies have suggested that CTRP6 has protective roles in atherosclerotic cell models, myocardial infarction rat models, and ischemia/reperfusion injury mouse models, methodological issues such as unreliable antibodies and unstrict controls make it difficult to draw accurate conclusions from these studies. Patients with polycystic ovary syndrome (PCOS) exhibit elevated serum levels of CTRP6, although its direct impact on PCOS phenotypes remains unclear. In conclusion, CTRP6 emerges as a promising therapeutic target for metabolic diseases. A deeper understanding of CTRP6 will empower the scientific community to develop effective interventions to address the increasing prevalence of these diseases.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E139-E147"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring CTRP6: a biomarker and therapeutic target in metabolic diseases.\",\"authors\":\"Jeevotham Senthil Kumar, Muhammad Zubair Mehboob, Xia Lei\",\"doi\":\"10.1152/ajpendo.00353.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rising prevalence of metabolic diseases is a significant global health concern. Beyond lifestyle management, targeting key molecules involved in metabolic regulation is essential. C1q/TNF-related protein 6 (CTRP6) is notably associated with glucose and lipid metabolism, with numerous studies highlighting its regulatory functions in metabolic diseases. This review summarizes the current knowledge on CTRP6, focusing on its gene expression profiles, protein structure, gene regulation, and role in metabolic diseases. CTRP6 is widely expressed across various tissues and features four distinct domains, with the C1q domain predicted to bind to its receptor. Notably, serum levels of CTRP6 are significantly elevated in patients with obesity and type 2 diabetes. In these conditions, adipose tissue serves as a key source of CTRP6 and its involvement in adipose tissue expansion, inflammation, and nutrient sensing has been observed in several studies. CTRP6 is also implicated in type 1 diabetes, gestational diabetes mellitus, and diabetic complications, particularly diabetic nephropathy. Although some studies have suggested that CTRP6 has protective roles in atherosclerotic cell models, myocardial infarction rat models, and ischemia/reperfusion injury mouse models, methodological issues such as unreliable antibodies and unstrict controls make it difficult to draw accurate conclusions from these studies. Patients with polycystic ovary syndrome (PCOS) exhibit elevated serum levels of CTRP6, although its direct impact on PCOS phenotypes remains unclear. In conclusion, CTRP6 emerges as a promising therapeutic target for metabolic diseases. A deeper understanding of CTRP6 will empower the scientific community to develop effective interventions to address the increasing prevalence of these diseases.</p>\",\"PeriodicalId\":7594,\"journal\":{\"name\":\"American journal of physiology. Endocrinology and metabolism\",\"volume\":\" \",\"pages\":\"E139-E147\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Endocrinology and metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpendo.00353.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00353.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

代谢性疾病发病率的上升是一个重大的全球健康问题。除了生活方式管理之外,瞄准代谢调节的关键分子也是必不可少的。C1q/ tnf相关蛋白6 (CTRP6)与糖脂代谢密切相关,许多研究强调其在代谢性疾病中的调节功能。本文就CTRP6的基因表达谱、蛋白结构、基因调控及其在代谢性疾病中的作用等方面进行综述。CTRP6在各种组织中广泛表达,并具有四个不同的结构域,其中C1q结构域被预测与其受体结合。值得注意的是,肥胖和2型糖尿病患者的血清CTRP6水平显著升高。在这些情况下,脂肪组织是CTRP6的关键来源,在一些研究中已经观察到它参与脂肪组织扩张、炎症和营养感知。CTRP6也与1型糖尿病、妊娠期糖尿病和糖尿病并发症,特别是糖尿病肾病有关。尽管一些研究表明CTRP6在动脉粥样硬化细胞模型、心肌梗死大鼠模型和缺血再灌注损伤小鼠模型中具有保护作用,但由于抗体不可靠、控制不严格等方法学问题,这些研究难以得出准确的结论。多囊卵巢综合征(PCOS)患者表现出血清CTRP6水平升高,尽管其对PCOS表型的直接影响尚不清楚。综上所述,CTRP6有望成为代谢性疾病的治疗靶点。对CTRP6的深入了解将使科学界能够制定有效的干预措施,以解决这些疾病日益流行的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring CTRP6: a biomarker and therapeutic target in metabolic diseases.

The rising prevalence of metabolic diseases is a significant global health concern. Beyond lifestyle management, targeting key molecules involved in metabolic regulation is essential. C1q/TNF-related protein 6 (CTRP6) is notably associated with glucose and lipid metabolism, with numerous studies highlighting its regulatory functions in metabolic diseases. This review summarizes the current knowledge on CTRP6, focusing on its gene expression profiles, protein structure, gene regulation, and role in metabolic diseases. CTRP6 is widely expressed across various tissues and features four distinct domains, with the C1q domain predicted to bind to its receptor. Notably, serum levels of CTRP6 are significantly elevated in patients with obesity and type 2 diabetes. In these conditions, adipose tissue serves as a key source of CTRP6 and its involvement in adipose tissue expansion, inflammation, and nutrient sensing has been observed in several studies. CTRP6 is also implicated in type 1 diabetes, gestational diabetes mellitus, and diabetic complications, particularly diabetic nephropathy. Although some studies have suggested that CTRP6 has protective roles in atherosclerotic cell models, myocardial infarction rat models, and ischemia/reperfusion injury mouse models, methodological issues such as unreliable antibodies and unstrict controls make it difficult to draw accurate conclusions from these studies. Patients with polycystic ovary syndrome (PCOS) exhibit elevated serum levels of CTRP6, although its direct impact on PCOS phenotypes remains unclear. In conclusion, CTRP6 emerges as a promising therapeutic target for metabolic diseases. A deeper understanding of CTRP6 will empower the scientific community to develop effective interventions to address the increasing prevalence of these diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
0.00%
发文量
98
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信