推进发展中国家的城市机动性:可持续交通的移动RSU方法

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Justin Moskolaï Ngossaha, Léonce Thérèse Pidy Pidy, Thenuka Karunathilake, Anna Förster, Samuel Bowong
{"title":"推进发展中国家的城市机动性:可持续交通的移动RSU方法","authors":"Justin Moskolaï Ngossaha,&nbsp;Léonce Thérèse Pidy Pidy,&nbsp;Thenuka Karunathilake,&nbsp;Anna Förster,&nbsp;Samuel Bowong","doi":"10.1049/itr2.12586","DOIUrl":null,"url":null,"abstract":"<p>The rapid and uncontrolled urbanization of cities in developing countries has engendered a plethora of urban mobility issues, including traffic congestion, accidents, and air pollution. To address these challenges, contemporary urban mobility trends are incorporating innovative technologies and sustainable governance practices. This article investigates how urban managers can leverage the opportunities presented by cost-effective technologies and the management of urban data to enhance urban mobility in developing countries. Within this discourse, an RSU-based approach is proposed that employs motorbike taxis for inter-vehicular communication, given their status as the most widely used form of public transportation. This approach substantially diminishes investment costs and reinforces the sustainability of urban mobility. Through the implementation of this solution, a noteworthy reduction is anticipated in the emission of gases such as CO2, and NOx, known contributors to climate change and various respiratory diseases. To validate the efficacy of the proposed solution, four distinct scenarios are scrutinized in a case study centered on the city of Douala in Cameroon, utilizing tools such as OMNET++, SUMO, Veins, and INET. The proposed framework offers significant benefits in terms of environmental sustainability and operational efficiency. It enables a 10% reduction in CO2 emissions, a 15% reduction in NOx emissions, an 11% drop in fuel consumption, and a 15% reduction in waiting time in traffic jams. The envisaged solution aims to aid urban managers in their decision-making processes, specifically in advancing sustainable urban mobility. Through the adoption of this approach, cities in developing countries can mitigate challenges associated with urban mobility and enhance the overall well-being of their residents.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2502-2519"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12586","citationCount":"0","resultStr":"{\"title\":\"Advancing urban mobility in developing countries: A mobile RSU approach for sustainable transportation\",\"authors\":\"Justin Moskolaï Ngossaha,&nbsp;Léonce Thérèse Pidy Pidy,&nbsp;Thenuka Karunathilake,&nbsp;Anna Förster,&nbsp;Samuel Bowong\",\"doi\":\"10.1049/itr2.12586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid and uncontrolled urbanization of cities in developing countries has engendered a plethora of urban mobility issues, including traffic congestion, accidents, and air pollution. To address these challenges, contemporary urban mobility trends are incorporating innovative technologies and sustainable governance practices. This article investigates how urban managers can leverage the opportunities presented by cost-effective technologies and the management of urban data to enhance urban mobility in developing countries. Within this discourse, an RSU-based approach is proposed that employs motorbike taxis for inter-vehicular communication, given their status as the most widely used form of public transportation. This approach substantially diminishes investment costs and reinforces the sustainability of urban mobility. Through the implementation of this solution, a noteworthy reduction is anticipated in the emission of gases such as CO2, and NOx, known contributors to climate change and various respiratory diseases. To validate the efficacy of the proposed solution, four distinct scenarios are scrutinized in a case study centered on the city of Douala in Cameroon, utilizing tools such as OMNET++, SUMO, Veins, and INET. The proposed framework offers significant benefits in terms of environmental sustainability and operational efficiency. It enables a 10% reduction in CO2 emissions, a 15% reduction in NOx emissions, an 11% drop in fuel consumption, and a 15% reduction in waiting time in traffic jams. The envisaged solution aims to aid urban managers in their decision-making processes, specifically in advancing sustainable urban mobility. Through the adoption of this approach, cities in developing countries can mitigate challenges associated with urban mobility and enhance the overall well-being of their residents.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 12\",\"pages\":\"2502-2519\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12586\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12586\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12586","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

发展中国家城市的快速和不受控制的城市化产生了大量的城市流动性问题,包括交通拥堵、事故和空气污染。为了应对这些挑战,当代城市交通趋势正在结合创新技术和可持续治理实践。本文探讨了城市管理者如何利用高成本效益技术和城市数据管理带来的机会来提高发展中国家的城市流动性。在本文中,我们提出了一种基于rsu的方法,即使用摩托车出租车进行车辆间通信,因为它们是使用最广泛的公共交通形式。这种方法大大降低了投资成本,并加强了城市交通的可持续性。通过实施这一解决方案,预计二氧化碳和氮氧化物等已知导致气候变化和各种呼吸系统疾病的气体的排放将显著减少。为了验证所提出的解决方案的有效性,在以喀麦隆杜阿拉市为中心的案例研究中,利用omnet++、SUMO、vein和INET等工具,仔细审查了四种不同的场景。拟议的框架在环境可持续性和运营效率方面提供了显著的好处。它可以减少10%的二氧化碳排放量,减少15%的氮氧化物排放量,降低11%的燃油消耗,减少15%的交通拥堵等待时间。设想的解决方案旨在帮助城市管理者在决策过程中,特别是在推进可持续城市交通方面。通过采用这种方法,发展中国家的城市可以减轻与城市流动性相关的挑战,并提高居民的整体福祉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing urban mobility in developing countries: A mobile RSU approach for sustainable transportation

Advancing urban mobility in developing countries: A mobile RSU approach for sustainable transportation

The rapid and uncontrolled urbanization of cities in developing countries has engendered a plethora of urban mobility issues, including traffic congestion, accidents, and air pollution. To address these challenges, contemporary urban mobility trends are incorporating innovative technologies and sustainable governance practices. This article investigates how urban managers can leverage the opportunities presented by cost-effective technologies and the management of urban data to enhance urban mobility in developing countries. Within this discourse, an RSU-based approach is proposed that employs motorbike taxis for inter-vehicular communication, given their status as the most widely used form of public transportation. This approach substantially diminishes investment costs and reinforces the sustainability of urban mobility. Through the implementation of this solution, a noteworthy reduction is anticipated in the emission of gases such as CO2, and NOx, known contributors to climate change and various respiratory diseases. To validate the efficacy of the proposed solution, four distinct scenarios are scrutinized in a case study centered on the city of Douala in Cameroon, utilizing tools such as OMNET++, SUMO, Veins, and INET. The proposed framework offers significant benefits in terms of environmental sustainability and operational efficiency. It enables a 10% reduction in CO2 emissions, a 15% reduction in NOx emissions, an 11% drop in fuel consumption, and a 15% reduction in waiting time in traffic jams. The envisaged solution aims to aid urban managers in their decision-making processes, specifically in advancing sustainable urban mobility. Through the adoption of this approach, cities in developing countries can mitigate challenges associated with urban mobility and enhance the overall well-being of their residents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信