{"title":"基于原子轨道搜索和反向传播神经网络的电动客车续驶里程估计","authors":"Hanchen Ke, Jun Bi, Yongxing Wang, Yu Zhang","doi":"10.1049/itr2.12592","DOIUrl":null,"url":null,"abstract":"<p>As urbanization and transportation demands continue to increase, electric buses play an important role in sustainable urban development thanks to their advantages of emission reduction, noise and pollution reduction. However, electric buses still face some challenges, in which, range anxiety is one of the main factors limiting its popularization. To solve this problem, an accurate estimation method for the driving range of electric buses based on atomic orbital search (AOS) algorithm and back propagation neural network (BPNN) was used, in which a long-term bus operation dataset under different driving conditions is utilized to train BPNN, and then weight and bias are taken as the first generation provided for AOS approach to find a more appropriate parameter combination. Simulation and experimental analysis show that the algorithm introduced in this paper has higher prediction accuracy and efficiency compared to the traditional machine learning algorithms, that compared with BPNN, AOSBP reduced MAE, RMSE and MAPE by 85.6%, 50.9% and 64.6%, respectively, which effectively relieves range anxiety, and ensures the normal operation of the electric bus fleet.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 S1","pages":"2884-2895"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12592","citationCount":"0","resultStr":"{\"title\":\"Driving range estimation for electric bus based on atomic orbital search and back propagation neural network\",\"authors\":\"Hanchen Ke, Jun Bi, Yongxing Wang, Yu Zhang\",\"doi\":\"10.1049/itr2.12592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As urbanization and transportation demands continue to increase, electric buses play an important role in sustainable urban development thanks to their advantages of emission reduction, noise and pollution reduction. However, electric buses still face some challenges, in which, range anxiety is one of the main factors limiting its popularization. To solve this problem, an accurate estimation method for the driving range of electric buses based on atomic orbital search (AOS) algorithm and back propagation neural network (BPNN) was used, in which a long-term bus operation dataset under different driving conditions is utilized to train BPNN, and then weight and bias are taken as the first generation provided for AOS approach to find a more appropriate parameter combination. Simulation and experimental analysis show that the algorithm introduced in this paper has higher prediction accuracy and efficiency compared to the traditional machine learning algorithms, that compared with BPNN, AOSBP reduced MAE, RMSE and MAPE by 85.6%, 50.9% and 64.6%, respectively, which effectively relieves range anxiety, and ensures the normal operation of the electric bus fleet.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 S1\",\"pages\":\"2884-2895\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12592\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12592\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12592","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Driving range estimation for electric bus based on atomic orbital search and back propagation neural network
As urbanization and transportation demands continue to increase, electric buses play an important role in sustainable urban development thanks to their advantages of emission reduction, noise and pollution reduction. However, electric buses still face some challenges, in which, range anxiety is one of the main factors limiting its popularization. To solve this problem, an accurate estimation method for the driving range of electric buses based on atomic orbital search (AOS) algorithm and back propagation neural network (BPNN) was used, in which a long-term bus operation dataset under different driving conditions is utilized to train BPNN, and then weight and bias are taken as the first generation provided for AOS approach to find a more appropriate parameter combination. Simulation and experimental analysis show that the algorithm introduced in this paper has higher prediction accuracy and efficiency compared to the traditional machine learning algorithms, that compared with BPNN, AOSBP reduced MAE, RMSE and MAPE by 85.6%, 50.9% and 64.6%, respectively, which effectively relieves range anxiety, and ensures the normal operation of the electric bus fleet.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf