基于原子轨道搜索和反向传播神经网络的电动客车续驶里程估计

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hanchen Ke, Jun Bi, Yongxing Wang, Yu Zhang
{"title":"基于原子轨道搜索和反向传播神经网络的电动客车续驶里程估计","authors":"Hanchen Ke,&nbsp;Jun Bi,&nbsp;Yongxing Wang,&nbsp;Yu Zhang","doi":"10.1049/itr2.12592","DOIUrl":null,"url":null,"abstract":"<p>As urbanization and transportation demands continue to increase, electric buses play an important role in sustainable urban development thanks to their advantages of emission reduction, noise and pollution reduction. However, electric buses still face some challenges, in which, range anxiety is one of the main factors limiting its popularization. To solve this problem, an accurate estimation method for the driving range of electric buses based on atomic orbital search (AOS) algorithm and back propagation neural network (BPNN) was used, in which a long-term bus operation dataset under different driving conditions is utilized to train BPNN, and then weight and bias are taken as the first generation provided for AOS approach to find a more appropriate parameter combination. Simulation and experimental analysis show that the algorithm introduced in this paper has higher prediction accuracy and efficiency compared to the traditional machine learning algorithms, that compared with BPNN, AOSBP reduced MAE, RMSE and MAPE by 85.6%, 50.9% and 64.6%, respectively, which effectively relieves range anxiety, and ensures the normal operation of the electric bus fleet.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 S1","pages":"2884-2895"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12592","citationCount":"0","resultStr":"{\"title\":\"Driving range estimation for electric bus based on atomic orbital search and back propagation neural network\",\"authors\":\"Hanchen Ke,&nbsp;Jun Bi,&nbsp;Yongxing Wang,&nbsp;Yu Zhang\",\"doi\":\"10.1049/itr2.12592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As urbanization and transportation demands continue to increase, electric buses play an important role in sustainable urban development thanks to their advantages of emission reduction, noise and pollution reduction. However, electric buses still face some challenges, in which, range anxiety is one of the main factors limiting its popularization. To solve this problem, an accurate estimation method for the driving range of electric buses based on atomic orbital search (AOS) algorithm and back propagation neural network (BPNN) was used, in which a long-term bus operation dataset under different driving conditions is utilized to train BPNN, and then weight and bias are taken as the first generation provided for AOS approach to find a more appropriate parameter combination. Simulation and experimental analysis show that the algorithm introduced in this paper has higher prediction accuracy and efficiency compared to the traditional machine learning algorithms, that compared with BPNN, AOSBP reduced MAE, RMSE and MAPE by 85.6%, 50.9% and 64.6%, respectively, which effectively relieves range anxiety, and ensures the normal operation of the electric bus fleet.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 S1\",\"pages\":\"2884-2895\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12592\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12592\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12592","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着城市化和交通需求的不断增加,电动公交车以其减排、降噪和减少污染的优势,在城市可持续发展中发挥着重要作用。然而,电动公交车仍然面临着一些挑战,其中里程焦虑是限制其普及的主要因素之一。为解决这一问题,采用基于原子轨道搜索(AOS)算法和反向传播神经网络(BPNN)的电动客车续驶里程精确估计方法,利用不同行驶工况下的长期客车运行数据集训练BPNN,然后以权值和偏置作为AOS方法提供的第一代参数组合,寻找更合适的参数组合。仿真和实验分析表明,与传统机器学习算法相比,本文算法具有更高的预测精度和效率,与BPNN相比,AOSBP将MAE、RMSE和MAPE分别降低了85.6%、50.9%和64.6%,有效缓解了里程焦虑,保证了电动客车车队的正常运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Driving range estimation for electric bus based on atomic orbital search and back propagation neural network

Driving range estimation for electric bus based on atomic orbital search and back propagation neural network

As urbanization and transportation demands continue to increase, electric buses play an important role in sustainable urban development thanks to their advantages of emission reduction, noise and pollution reduction. However, electric buses still face some challenges, in which, range anxiety is one of the main factors limiting its popularization. To solve this problem, an accurate estimation method for the driving range of electric buses based on atomic orbital search (AOS) algorithm and back propagation neural network (BPNN) was used, in which a long-term bus operation dataset under different driving conditions is utilized to train BPNN, and then weight and bias are taken as the first generation provided for AOS approach to find a more appropriate parameter combination. Simulation and experimental analysis show that the algorithm introduced in this paper has higher prediction accuracy and efficiency compared to the traditional machine learning algorithms, that compared with BPNN, AOSBP reduced MAE, RMSE and MAPE by 85.6%, 50.9% and 64.6%, respectively, which effectively relieves range anxiety, and ensures the normal operation of the electric bus fleet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信