胱氨酰-tRNA 合成酶通过热蛋白沉积参与缺血再灌注诱导的急性肾损伤中肾小管细胞的损伤

Hongsha Yang, Pan Song, Meidie Yu, Liming Huang, Yun Tang, Guisen Li, Yi Li, Yunlin Feng
{"title":"胱氨酰-tRNA 合成酶通过热蛋白沉积参与缺血再灌注诱导的急性肾损伤中肾小管细胞的损伤","authors":"Hongsha Yang,&nbsp;Pan Song,&nbsp;Meidie Yu,&nbsp;Liming Huang,&nbsp;Yun Tang,&nbsp;Guisen Li,&nbsp;Yi Li,&nbsp;Yunlin Feng","doi":"10.1002/mef2.70005","DOIUrl":null,"url":null,"abstract":"<p>Acute kidney injury (AKI) is a significant global healthcare burden but lacks specific and effective treatment. Renal tubular cells damage is central to ischemia-reperfusion injury (IRI) induced AKI. It is critical to clarify the initiation mechanisms of renal IRI and develop early intervention targets of AKI. This study used label-free quantification proteomic analysis to identify new targets in AKI-related renal tubular injury and investigate the potential mechanisms. We discovered significant changes in cysteinyl-tRNA synthetase (CARS) in renal tubular cell during IRI. Considering the involvement of CARS in ATP metabolism and the close correlation between ATP and pyroptosis, we further explored pyroptosis phenotype with and without CARS intervention as well as the expression of CARS during pyroptosis activation and inhibition. Our findings suggest that CARS expression decreased over time and is linked to pyroptosis. Modifying CARS affects ATP metabolism and alters the expression of pyroptosis-related proteins during H/R and IRI treatments. Regulating pyroptosis may influence CARS expression during IRI treatment. Overall, CARS is associated with renal tubular damage from ischemia-reperfusion injury, possibly involving pyroptosis, though the regulatory mechanism remains unclear.</p>","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.70005","citationCount":"0","resultStr":"{\"title\":\"Cysteinyl-tRNA synthetase is involved in damage of renal tubular cells in ischemia–reperfusion-induced acute kidney injury via pyroptosis\",\"authors\":\"Hongsha Yang,&nbsp;Pan Song,&nbsp;Meidie Yu,&nbsp;Liming Huang,&nbsp;Yun Tang,&nbsp;Guisen Li,&nbsp;Yi Li,&nbsp;Yunlin Feng\",\"doi\":\"10.1002/mef2.70005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Acute kidney injury (AKI) is a significant global healthcare burden but lacks specific and effective treatment. Renal tubular cells damage is central to ischemia-reperfusion injury (IRI) induced AKI. It is critical to clarify the initiation mechanisms of renal IRI and develop early intervention targets of AKI. This study used label-free quantification proteomic analysis to identify new targets in AKI-related renal tubular injury and investigate the potential mechanisms. We discovered significant changes in cysteinyl-tRNA synthetase (CARS) in renal tubular cell during IRI. Considering the involvement of CARS in ATP metabolism and the close correlation between ATP and pyroptosis, we further explored pyroptosis phenotype with and without CARS intervention as well as the expression of CARS during pyroptosis activation and inhibition. Our findings suggest that CARS expression decreased over time and is linked to pyroptosis. Modifying CARS affects ATP metabolism and alters the expression of pyroptosis-related proteins during H/R and IRI treatments. Regulating pyroptosis may influence CARS expression during IRI treatment. Overall, CARS is associated with renal tubular damage from ischemia-reperfusion injury, possibly involving pyroptosis, though the regulatory mechanism remains unclear.</p>\",\"PeriodicalId\":74135,\"journal\":{\"name\":\"MedComm - Future medicine\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.70005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm - Future medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mef2.70005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm - Future medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mef2.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cysteinyl-tRNA synthetase is involved in damage of renal tubular cells in ischemia–reperfusion-induced acute kidney injury via pyroptosis

Cysteinyl-tRNA synthetase is involved in damage of renal tubular cells in ischemia–reperfusion-induced acute kidney injury via pyroptosis

Acute kidney injury (AKI) is a significant global healthcare burden but lacks specific and effective treatment. Renal tubular cells damage is central to ischemia-reperfusion injury (IRI) induced AKI. It is critical to clarify the initiation mechanisms of renal IRI and develop early intervention targets of AKI. This study used label-free quantification proteomic analysis to identify new targets in AKI-related renal tubular injury and investigate the potential mechanisms. We discovered significant changes in cysteinyl-tRNA synthetase (CARS) in renal tubular cell during IRI. Considering the involvement of CARS in ATP metabolism and the close correlation between ATP and pyroptosis, we further explored pyroptosis phenotype with and without CARS intervention as well as the expression of CARS during pyroptosis activation and inhibition. Our findings suggest that CARS expression decreased over time and is linked to pyroptosis. Modifying CARS affects ATP metabolism and alters the expression of pyroptosis-related proteins during H/R and IRI treatments. Regulating pyroptosis may influence CARS expression during IRI treatment. Overall, CARS is associated with renal tubular damage from ischemia-reperfusion injury, possibly involving pyroptosis, though the regulatory mechanism remains unclear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信