{"title":"用于皮肤病变分类的卷积块注意力模块的关系探索","authors":"Qichen Su, Haza Nuzly Abdull Hamed, Dazhuo Zhou","doi":"10.1002/ima.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Skin cancer remains a significant global health concern, demanding accurate and efficient diagnostic solutions. Despite advances in convolutional neural networks for computer vision, automated skin lesion diagnosis remains challenging due to the small lesion region in images and limited inter-class variation. Accurate classification depends on precise lesion localization and recognition of fine-grained visual differences. To address these challenges, this paper proposes an enhancement to the Convolutional Block Attention Module, referred to as Relation Explore Convolutional Block Attention Module. This enhancement improves upon the existing module by utilizing multiple combinations of pooling-based attentions, enabling the model to better learn and leverage complex interactions during training. Extensive experiments are conducted to investigate the performance of skin lesion diagnosis when integrating Relation Explore Convolutional Block Attention Module with ResNet50 at different stages. The best-performing model achieves outstanding classification results on the publicly available HAM10000 dataset, with an Accuracy of 97.63%, Precision of 88.98%, Sensitivity of 82.86%, Specificity of 97.65%, and F1-score of 85.46%, using fivefold cross-validation. The high performance of this model, alongside the clear interpretability provided by its attention maps, builds trust in automated systems. This trust empowers clinicians to make well-informed decisions, significantly enhancing the potential for improved patient outcomes.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relation Explore Convolutional Block Attention Module for Skin Lesion Classification\",\"authors\":\"Qichen Su, Haza Nuzly Abdull Hamed, Dazhuo Zhou\",\"doi\":\"10.1002/ima.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Skin cancer remains a significant global health concern, demanding accurate and efficient diagnostic solutions. Despite advances in convolutional neural networks for computer vision, automated skin lesion diagnosis remains challenging due to the small lesion region in images and limited inter-class variation. Accurate classification depends on precise lesion localization and recognition of fine-grained visual differences. To address these challenges, this paper proposes an enhancement to the Convolutional Block Attention Module, referred to as Relation Explore Convolutional Block Attention Module. This enhancement improves upon the existing module by utilizing multiple combinations of pooling-based attentions, enabling the model to better learn and leverage complex interactions during training. Extensive experiments are conducted to investigate the performance of skin lesion diagnosis when integrating Relation Explore Convolutional Block Attention Module with ResNet50 at different stages. The best-performing model achieves outstanding classification results on the publicly available HAM10000 dataset, with an Accuracy of 97.63%, Precision of 88.98%, Sensitivity of 82.86%, Specificity of 97.65%, and F1-score of 85.46%, using fivefold cross-validation. The high performance of this model, alongside the clear interpretability provided by its attention maps, builds trust in automated systems. This trust empowers clinicians to make well-informed decisions, significantly enhancing the potential for improved patient outcomes.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70002\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70002","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Relation Explore Convolutional Block Attention Module for Skin Lesion Classification
Skin cancer remains a significant global health concern, demanding accurate and efficient diagnostic solutions. Despite advances in convolutional neural networks for computer vision, automated skin lesion diagnosis remains challenging due to the small lesion region in images and limited inter-class variation. Accurate classification depends on precise lesion localization and recognition of fine-grained visual differences. To address these challenges, this paper proposes an enhancement to the Convolutional Block Attention Module, referred to as Relation Explore Convolutional Block Attention Module. This enhancement improves upon the existing module by utilizing multiple combinations of pooling-based attentions, enabling the model to better learn and leverage complex interactions during training. Extensive experiments are conducted to investigate the performance of skin lesion diagnosis when integrating Relation Explore Convolutional Block Attention Module with ResNet50 at different stages. The best-performing model achieves outstanding classification results on the publicly available HAM10000 dataset, with an Accuracy of 97.63%, Precision of 88.98%, Sensitivity of 82.86%, Specificity of 97.65%, and F1-score of 85.46%, using fivefold cross-validation. The high performance of this model, alongside the clear interpretability provided by its attention maps, builds trust in automated systems. This trust empowers clinicians to make well-informed decisions, significantly enhancing the potential for improved patient outcomes.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.