{"title":"基于修正UTAUT2模型的大学生生成式人工智能教育行为意向影响因素研究","authors":"Xin Tang, Zhiqiang Yuan, Shaojun Qu","doi":"10.1111/jcal.13105","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Generative artificial intelligence (AI) represents a significant technological leap, with platforms like OpenAI's ChatGPT and Baidu's Ernie Bot at the forefront of innovation. This technology has seen widespread adoption across various sectors of society and is anticipated to revolutionise the educational landscape, especially in the domain of tertiary education. However, there is a gap in understanding factors influencing university students' behavioural intention to use generative AI, leading to hesitation in its adoption.</p>\n </section>\n \n <section>\n \n <h3> Objectives</h3>\n \n <p>The primary objective of this study was to investigate the factors that influence university students' behavioural intention to engage with and utilise generative AI. The study sought to delve into the fundamental reasons and obstacles that university students encounter when contemplating the adoption of this technology for their academic endeavours.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The study used a quantitative research design, utilising a revised version of the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model. Data were collected from a sample of 380 university students in Changsha, the capital city of Hunan in China. Partial least squares structural equation modelling (PLS-SEM) was used to analyse the relationships between the variables of the model, which included performance expectancy (PE), effort expectancy (EE), social influence (SI), facilitating conditions (FC), learning value, habit and behavioural intention.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The analysis revealed that PE and EE have a direct impact on learning value. Additionally, SI and FC were found to directly affect the formation of habit. Among these factors, learning value emerged as the most potent predictor of university students' behavioural intention to use generative AI. Habit also demonstrated a significant, albeit smaller, effect on behavioural intention.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The study's findings underscore the importance of learning value in driving the adoption of generative AI among university students. Efforts to enhance the learning value of generative AI could significantly increase its uptake in higher education. Furthermore, the role of habit, while less pronounced, suggests that consistent exposure and use can foster a greater inclination towards generative AI. These insights provide a foundation for targeted interventions aimed at improving the integration and application of generative AI within educational settings. Stakeholders, including educators, policymakers and designers of generative AI, can leverage these findings to create an environment conducive to the adoption and effective use of generative AI in higher education.</p>\n </section>\n </div>","PeriodicalId":48071,"journal":{"name":"Journal of Computer Assisted Learning","volume":"41 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factors Influencing University Students' Behavioural Intention to Use Generative Artificial Intelligence for Educational Purposes Based on a Revised UTAUT2 Model\",\"authors\":\"Xin Tang, Zhiqiang Yuan, Shaojun Qu\",\"doi\":\"10.1111/jcal.13105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Generative artificial intelligence (AI) represents a significant technological leap, with platforms like OpenAI's ChatGPT and Baidu's Ernie Bot at the forefront of innovation. This technology has seen widespread adoption across various sectors of society and is anticipated to revolutionise the educational landscape, especially in the domain of tertiary education. However, there is a gap in understanding factors influencing university students' behavioural intention to use generative AI, leading to hesitation in its adoption.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Objectives</h3>\\n \\n <p>The primary objective of this study was to investigate the factors that influence university students' behavioural intention to engage with and utilise generative AI. The study sought to delve into the fundamental reasons and obstacles that university students encounter when contemplating the adoption of this technology for their academic endeavours.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The study used a quantitative research design, utilising a revised version of the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model. Data were collected from a sample of 380 university students in Changsha, the capital city of Hunan in China. Partial least squares structural equation modelling (PLS-SEM) was used to analyse the relationships between the variables of the model, which included performance expectancy (PE), effort expectancy (EE), social influence (SI), facilitating conditions (FC), learning value, habit and behavioural intention.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The analysis revealed that PE and EE have a direct impact on learning value. Additionally, SI and FC were found to directly affect the formation of habit. Among these factors, learning value emerged as the most potent predictor of university students' behavioural intention to use generative AI. Habit also demonstrated a significant, albeit smaller, effect on behavioural intention.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The study's findings underscore the importance of learning value in driving the adoption of generative AI among university students. Efforts to enhance the learning value of generative AI could significantly increase its uptake in higher education. Furthermore, the role of habit, while less pronounced, suggests that consistent exposure and use can foster a greater inclination towards generative AI. These insights provide a foundation for targeted interventions aimed at improving the integration and application of generative AI within educational settings. Stakeholders, including educators, policymakers and designers of generative AI, can leverage these findings to create an environment conducive to the adoption and effective use of generative AI in higher education.</p>\\n </section>\\n </div>\",\"PeriodicalId\":48071,\"journal\":{\"name\":\"Journal of Computer Assisted Learning\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Assisted Learning\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcal.13105\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Assisted Learning","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcal.13105","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Factors Influencing University Students' Behavioural Intention to Use Generative Artificial Intelligence for Educational Purposes Based on a Revised UTAUT2 Model
Background
Generative artificial intelligence (AI) represents a significant technological leap, with platforms like OpenAI's ChatGPT and Baidu's Ernie Bot at the forefront of innovation. This technology has seen widespread adoption across various sectors of society and is anticipated to revolutionise the educational landscape, especially in the domain of tertiary education. However, there is a gap in understanding factors influencing university students' behavioural intention to use generative AI, leading to hesitation in its adoption.
Objectives
The primary objective of this study was to investigate the factors that influence university students' behavioural intention to engage with and utilise generative AI. The study sought to delve into the fundamental reasons and obstacles that university students encounter when contemplating the adoption of this technology for their academic endeavours.
Methods
The study used a quantitative research design, utilising a revised version of the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model. Data were collected from a sample of 380 university students in Changsha, the capital city of Hunan in China. Partial least squares structural equation modelling (PLS-SEM) was used to analyse the relationships between the variables of the model, which included performance expectancy (PE), effort expectancy (EE), social influence (SI), facilitating conditions (FC), learning value, habit and behavioural intention.
Results
The analysis revealed that PE and EE have a direct impact on learning value. Additionally, SI and FC were found to directly affect the formation of habit. Among these factors, learning value emerged as the most potent predictor of university students' behavioural intention to use generative AI. Habit also demonstrated a significant, albeit smaller, effect on behavioural intention.
Conclusions
The study's findings underscore the importance of learning value in driving the adoption of generative AI among university students. Efforts to enhance the learning value of generative AI could significantly increase its uptake in higher education. Furthermore, the role of habit, while less pronounced, suggests that consistent exposure and use can foster a greater inclination towards generative AI. These insights provide a foundation for targeted interventions aimed at improving the integration and application of generative AI within educational settings. Stakeholders, including educators, policymakers and designers of generative AI, can leverage these findings to create an environment conducive to the adoption and effective use of generative AI in higher education.
期刊介绍:
The Journal of Computer Assisted Learning is an international peer-reviewed journal which covers the whole range of uses of information and communication technology to support learning and knowledge exchange. It aims to provide a medium for communication among researchers as well as a channel linking researchers, practitioners, and policy makers. JCAL is also a rich source of material for master and PhD students in areas such as educational psychology, the learning sciences, instructional technology, instructional design, collaborative learning, intelligent learning systems, learning analytics, open, distance and networked learning, and educational evaluation and assessment. This is the case for formal (e.g., schools), non-formal (e.g., workplace learning) and informal learning (e.g., museums and libraries) situations and environments. Volumes often include one Special Issue which these provides readers with a broad and in-depth perspective on a specific topic. First published in 1985, JCAL continues to have the aim of making the outcomes of contemporary research and experience accessible. During this period there have been major technological advances offering new opportunities and approaches in the use of a wide range of technologies to support learning and knowledge transfer more generally. There is currently much emphasis on the use of network functionality and the challenges its appropriate uses pose to teachers/tutors working with students locally and at a distance. JCAL welcomes: -Empirical reports, single studies or programmatic series of studies on the use of computers and information technologies in learning and assessment -Critical and original meta-reviews of literature on the use of computers for learning -Empirical studies on the design and development of innovative technology-based systems for learning -Conceptual articles on issues relating to the Aims and Scope