Junwei Li, Huaquan Su, Li Guo, Wanshuo Wang, Yongjiao Yang, You Wen, Kai Li, Pingyan Mo
{"title":"移动网络中基于同态聚合签名方案的电子档案安全保护方法","authors":"Junwei Li, Huaquan Su, Li Guo, Wanshuo Wang, Yongjiao Yang, You Wen, Kai Li, Pingyan Mo","doi":"10.1002/nem.2316","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Electronic archives are now widely used in many different industries and serve as the primary method of information management and storage because of the rapid growth of information technology and mobile networks. To enhance the security of electronic archives in mobile networks, the research utilizes the federated learning mechanism to design a federated learning model based on homomorphic aggregation cryptographic signature scheme combined with mobile network management. The use of homomorphic encryption technology in the signing process of electronic archives enables the aggregation of multiple electronic file signatures into a single signature without exposing the data of the electronic archives. This reduces the computational and storage requirements for signature verification. At the same time, a secure aggregation signature scheme is used to ensure the integrity and security of the data in the aggregation process. A novel approach is presented in this study, whereby trusted federated learning models are innovatively combined with homomorphic aggregate signature technology. This integration ensures data integrity through aggregate signature schemes. The results showed that, under mobile network management, the longest encryption time of the trusted federated learning model was 52 ms, and the longest decryption time was 44 ms. The accuracy of the optimized learning model reached 97.49%, and the loss value was significantly reduced to 0.09. To summarize, the electronic archive security protection method based on homomorphic aggregation signature scheme effectively improves the archive data protection efficiency and security.</p>\n </div>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"35 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Security Protection Method for Electronic Archives Based on Homomorphic Aggregation Signature Scheme in Mobile Network\",\"authors\":\"Junwei Li, Huaquan Su, Li Guo, Wanshuo Wang, Yongjiao Yang, You Wen, Kai Li, Pingyan Mo\",\"doi\":\"10.1002/nem.2316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Electronic archives are now widely used in many different industries and serve as the primary method of information management and storage because of the rapid growth of information technology and mobile networks. To enhance the security of electronic archives in mobile networks, the research utilizes the federated learning mechanism to design a federated learning model based on homomorphic aggregation cryptographic signature scheme combined with mobile network management. The use of homomorphic encryption technology in the signing process of electronic archives enables the aggregation of multiple electronic file signatures into a single signature without exposing the data of the electronic archives. This reduces the computational and storage requirements for signature verification. At the same time, a secure aggregation signature scheme is used to ensure the integrity and security of the data in the aggregation process. A novel approach is presented in this study, whereby trusted federated learning models are innovatively combined with homomorphic aggregate signature technology. This integration ensures data integrity through aggregate signature schemes. The results showed that, under mobile network management, the longest encryption time of the trusted federated learning model was 52 ms, and the longest decryption time was 44 ms. The accuracy of the optimized learning model reached 97.49%, and the loss value was significantly reduced to 0.09. To summarize, the electronic archive security protection method based on homomorphic aggregation signature scheme effectively improves the archive data protection efficiency and security.</p>\\n </div>\",\"PeriodicalId\":14154,\"journal\":{\"name\":\"International Journal of Network Management\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Network Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nem.2316\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2316","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Security Protection Method for Electronic Archives Based on Homomorphic Aggregation Signature Scheme in Mobile Network
Electronic archives are now widely used in many different industries and serve as the primary method of information management and storage because of the rapid growth of information technology and mobile networks. To enhance the security of electronic archives in mobile networks, the research utilizes the federated learning mechanism to design a federated learning model based on homomorphic aggregation cryptographic signature scheme combined with mobile network management. The use of homomorphic encryption technology in the signing process of electronic archives enables the aggregation of multiple electronic file signatures into a single signature without exposing the data of the electronic archives. This reduces the computational and storage requirements for signature verification. At the same time, a secure aggregation signature scheme is used to ensure the integrity and security of the data in the aggregation process. A novel approach is presented in this study, whereby trusted federated learning models are innovatively combined with homomorphic aggregate signature technology. This integration ensures data integrity through aggregate signature schemes. The results showed that, under mobile network management, the longest encryption time of the trusted federated learning model was 52 ms, and the longest decryption time was 44 ms. The accuracy of the optimized learning model reached 97.49%, and the loss value was significantly reduced to 0.09. To summarize, the electronic archive security protection method based on homomorphic aggregation signature scheme effectively improves the archive data protection efficiency and security.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.