Rajan Ghimire, Deb Raj Aryal, Niall P. Hanan, Sawssan Boufous, Owen Burney, O. John Idowu, Hatim M. E. Geli, Brian Hurd, Lara Prihodko
{"title":"通过干旱和半干旱地区的可持续土地管理措施进行碳固存:新墨西哥州的启示","authors":"Rajan Ghimire, Deb Raj Aryal, Niall P. Hanan, Sawssan Boufous, Owen Burney, O. John Idowu, Hatim M. E. Geli, Brian Hurd, Lara Prihodko","doi":"10.1002/agg2.70019","DOIUrl":null,"url":null,"abstract":"<p>Arid and semiarid regions cover more than one-third of the land surface, where the interplay between water, land use, and management strongly influences carbon (C) sequestration. Yet, information on the C management practices and how local biophysical conditions affect the C sequestration potential is limited. We explored the opportunities, research gaps, and future directions of land C sequestration in arid and semiarid regions, using New Mexico as an example. We also identified the major land use types and their potential for C storage and sequestration. Our results showed that innovations in cropland and rangeland management, protection of existing forests, and restoration of degraded forest lands after drought and wildfire enhanced C sequestration in arid and semiarid lands. Landscape-scale C balance studies with fine-scale mapping, improving water and nutrient use efficiency, and policy incentives to support farms will unlock the full potential of C sequestration in croplands, rangelands, and forest lands. Future research should focus on the response of land management practices to climate anomalies and their potential to sequester C and offset greenhouse gas emissions as a natural climate solution in arid and semiarid regions.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.70019","citationCount":"0","resultStr":"{\"title\":\"Carbon sequestration through sustainable land management practices in arid and semiarid regions: Insights from New Mexico\",\"authors\":\"Rajan Ghimire, Deb Raj Aryal, Niall P. Hanan, Sawssan Boufous, Owen Burney, O. John Idowu, Hatim M. E. Geli, Brian Hurd, Lara Prihodko\",\"doi\":\"10.1002/agg2.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Arid and semiarid regions cover more than one-third of the land surface, where the interplay between water, land use, and management strongly influences carbon (C) sequestration. Yet, information on the C management practices and how local biophysical conditions affect the C sequestration potential is limited. We explored the opportunities, research gaps, and future directions of land C sequestration in arid and semiarid regions, using New Mexico as an example. We also identified the major land use types and their potential for C storage and sequestration. Our results showed that innovations in cropland and rangeland management, protection of existing forests, and restoration of degraded forest lands after drought and wildfire enhanced C sequestration in arid and semiarid lands. Landscape-scale C balance studies with fine-scale mapping, improving water and nutrient use efficiency, and policy incentives to support farms will unlock the full potential of C sequestration in croplands, rangelands, and forest lands. Future research should focus on the response of land management practices to climate anomalies and their potential to sequester C and offset greenhouse gas emissions as a natural climate solution in arid and semiarid regions.</p>\",\"PeriodicalId\":7567,\"journal\":{\"name\":\"Agrosystems, Geosciences & Environment\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.70019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agrosystems, Geosciences & Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agg2.70019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrosystems, Geosciences & Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agg2.70019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
Carbon sequestration through sustainable land management practices in arid and semiarid regions: Insights from New Mexico
Arid and semiarid regions cover more than one-third of the land surface, where the interplay between water, land use, and management strongly influences carbon (C) sequestration. Yet, information on the C management practices and how local biophysical conditions affect the C sequestration potential is limited. We explored the opportunities, research gaps, and future directions of land C sequestration in arid and semiarid regions, using New Mexico as an example. We also identified the major land use types and their potential for C storage and sequestration. Our results showed that innovations in cropland and rangeland management, protection of existing forests, and restoration of degraded forest lands after drought and wildfire enhanced C sequestration in arid and semiarid lands. Landscape-scale C balance studies with fine-scale mapping, improving water and nutrient use efficiency, and policy incentives to support farms will unlock the full potential of C sequestration in croplands, rangelands, and forest lands. Future research should focus on the response of land management practices to climate anomalies and their potential to sequester C and offset greenhouse gas emissions as a natural climate solution in arid and semiarid regions.