Gaël Mouzong D'Ambassa, Jean Moto Ongagna, Abel Idrice Adjieufack, Djendo Mazia Suzane Leonie, Désiré Bikele Mama
{"title":"Deciphering the Influence of Alkylene Bridged and Chelating Mode on Pd—C and Pd—X (X = Cl, Br, and I) Bonding Interaction Within Bis-(NHC)-Palladium Complexes Using Quantum Chemistry Tools","authors":"Gaël Mouzong D'Ambassa, Jean Moto Ongagna, Abel Idrice Adjieufack, Djendo Mazia Suzane Leonie, Désiré Bikele Mama","doi":"10.1002/qua.27522","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we have explored the influence of alkylene-bridged length and coordination mode on the reactivity of a series of 24 alkylene-bridged palladium complexes using computational tools (B3PW91/LANL2DZ//6-31G(d) level) in gas phase and DMSO. These palladium complexes prefer a boat and chair configuration for methylene and ethylene bridge length, respectively. In addition, phenyl and nitro complexes present a higher activation for Pd—C bonds while the most stable Pd⋯C interactions are observed for abnormal mode with methylene bridge. According to the energy decomposition analysis (EDA), hydrogen and phenyl complexes in both chelation modes present a better electrostatic character. Moreover, Pd⋯C interactions are stronger compared to the Pd⋯X ones for ethylene-bridged abnormal complexes (in gas phase). Finally, the donation/back-donation ratio (<i>d</i>/<i>b</i>) values reveal the Fischer carbene character of these [bis(NHC)]⋯[PdX<sub>2</sub>] interactions. Concerning the hybridization around the metal cation for the Pd—C bond, the sp<sup>2</sup>d type is observed for methylene-bridged palladium complexes while the sp<sup>3</sup> one is observed for ethylene bridge complexes.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 24","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27522","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Deciphering the Influence of Alkylene Bridged and Chelating Mode on Pd—C and Pd—X (X = Cl, Br, and I) Bonding Interaction Within Bis-(NHC)-Palladium Complexes Using Quantum Chemistry Tools
In this paper, we have explored the influence of alkylene-bridged length and coordination mode on the reactivity of a series of 24 alkylene-bridged palladium complexes using computational tools (B3PW91/LANL2DZ//6-31G(d) level) in gas phase and DMSO. These palladium complexes prefer a boat and chair configuration for methylene and ethylene bridge length, respectively. In addition, phenyl and nitro complexes present a higher activation for Pd—C bonds while the most stable Pd⋯C interactions are observed for abnormal mode with methylene bridge. According to the energy decomposition analysis (EDA), hydrogen and phenyl complexes in both chelation modes present a better electrostatic character. Moreover, Pd⋯C interactions are stronger compared to the Pd⋯X ones for ethylene-bridged abnormal complexes (in gas phase). Finally, the donation/back-donation ratio (d/b) values reveal the Fischer carbene character of these [bis(NHC)]⋯[PdX2] interactions. Concerning the hybridization around the metal cation for the Pd—C bond, the sp2d type is observed for methylene-bridged palladium complexes while the sp3 one is observed for ethylene bridge complexes.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.