下一代作物监测:MTEG-RTU算法与无人机协同实现精准疾病诊断

IF 2.3 4区 化学 Q1 SOCIAL WORK
Hemalatha S, Jai Jaganath Babu Jayachandran
{"title":"下一代作物监测:MTEG-RTU算法与无人机协同实现精准疾病诊断","authors":"Hemalatha S,&nbsp;Jai Jaganath Babu Jayachandran","doi":"10.1002/cem.3603","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The rapidly changing climatic scenarios are highly favorable for the rising diseases that lead to increasing threats to food production and supply. Various scholars and scientists make long steps to hasten the process of making innovations in farming for managing these issues. In this context, UAV is applied for the purpose of managing and monitoring plant health. The abiotic stresses available in plant diagnosis through traditional strategies are highly labor-intensive and unfit for large-scale deployment. Conversely, UAVs designed with mobile sensors, multispectral, radar, and so on make them flexible, affordable, and more effective. Thus, this study proposes a novel meta ensemble transfer extreme gradient-based random tactical unit (MTEG-RTU) algorithm for diagnosing crop illnesses precisely. The proposed MTEG-RTU methodology entails three methods such as transfer learning, adaptive boost, and meta-ensemble, and the hyper parameters are tuned using random tactical unit algorithm. Healthier and disordered crop images gained from the crop disease dataset comprise 8000 images and are preprocessed. The more optimal features from the preprocessed images are learned through the ResNet method, and these features enter into the classification phase. Random tactical unit algorithm enhanced the performance by optimizing the hyperparameters of MTEG classifier. The experimental results conducted based on the various assessment components and validation dataset indicate that the developed method outperformed the other chosen models, achieving precision, recall, and accuracy of 98.5%, 97.9%, and 98.6%, respectively. The other achievements made by the model are offering technical guidance for conducting the precise diagnosis and treatment of plant pathologies with less time of 9 s.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"38 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next-Gen Crop Monitoring: MTEG-RTU Algorithm and UAV Synergy for Precise Disease Diagnosis\",\"authors\":\"Hemalatha S,&nbsp;Jai Jaganath Babu Jayachandran\",\"doi\":\"10.1002/cem.3603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The rapidly changing climatic scenarios are highly favorable for the rising diseases that lead to increasing threats to food production and supply. Various scholars and scientists make long steps to hasten the process of making innovations in farming for managing these issues. In this context, UAV is applied for the purpose of managing and monitoring plant health. The abiotic stresses available in plant diagnosis through traditional strategies are highly labor-intensive and unfit for large-scale deployment. Conversely, UAVs designed with mobile sensors, multispectral, radar, and so on make them flexible, affordable, and more effective. Thus, this study proposes a novel meta ensemble transfer extreme gradient-based random tactical unit (MTEG-RTU) algorithm for diagnosing crop illnesses precisely. The proposed MTEG-RTU methodology entails three methods such as transfer learning, adaptive boost, and meta-ensemble, and the hyper parameters are tuned using random tactical unit algorithm. Healthier and disordered crop images gained from the crop disease dataset comprise 8000 images and are preprocessed. The more optimal features from the preprocessed images are learned through the ResNet method, and these features enter into the classification phase. Random tactical unit algorithm enhanced the performance by optimizing the hyperparameters of MTEG classifier. The experimental results conducted based on the various assessment components and validation dataset indicate that the developed method outperformed the other chosen models, achieving precision, recall, and accuracy of 98.5%, 97.9%, and 98.6%, respectively. The other achievements made by the model are offering technical guidance for conducting the precise diagnosis and treatment of plant pathologies with less time of 9 s.</p>\\n </div>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"38 12\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3603\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3603","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

迅速变化的气候环境非常有利于疾病的增加,导致粮食生产和供应面临越来越大的威胁。为了解决这些问题,许多学者和科学家都在加快农业创新的进程。在这种情况下,无人机被应用于管理和监测植物健康。通过传统方法对植物进行非生物胁迫诊断需要大量人力,不适合大规模部署。相反,设计有移动传感器、多光谱、雷达等的无人机则灵活、经济、有效。因此,本研究提出了一种新颖的基于极端梯度的元集合传输随机战术单元(MTEG-RTU)算法,用于精确诊断作物病害。所提出的 MTEG-RTU 方法包含三种方法,如迁移学习、自适应提升和元集合,并使用随机战术单元算法对超参数进行调整。从作物病害数据集中获取的健康和失调作物图像共有 8000 张,并对这些图像进行了预处理。通过 ResNet 方法从预处理后的图像中学习到更优化的特征,这些特征进入分类阶段。随机战术单元算法通过优化 MTEG 分类器的超参数提高了性能。基于各种评估组件和验证数据集进行的实验结果表明,所开发的方法优于其他所选模型,精确度、召回率和准确率分别达到 98.5%、97.9% 和 98.6%。该模型取得的其他成就还包括为植物病理学的精确诊断和治疗提供了技术指导,用时仅为 9 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next-Gen Crop Monitoring: MTEG-RTU Algorithm and UAV Synergy for Precise Disease Diagnosis

The rapidly changing climatic scenarios are highly favorable for the rising diseases that lead to increasing threats to food production and supply. Various scholars and scientists make long steps to hasten the process of making innovations in farming for managing these issues. In this context, UAV is applied for the purpose of managing and monitoring plant health. The abiotic stresses available in plant diagnosis through traditional strategies are highly labor-intensive and unfit for large-scale deployment. Conversely, UAVs designed with mobile sensors, multispectral, radar, and so on make them flexible, affordable, and more effective. Thus, this study proposes a novel meta ensemble transfer extreme gradient-based random tactical unit (MTEG-RTU) algorithm for diagnosing crop illnesses precisely. The proposed MTEG-RTU methodology entails three methods such as transfer learning, adaptive boost, and meta-ensemble, and the hyper parameters are tuned using random tactical unit algorithm. Healthier and disordered crop images gained from the crop disease dataset comprise 8000 images and are preprocessed. The more optimal features from the preprocessed images are learned through the ResNet method, and these features enter into the classification phase. Random tactical unit algorithm enhanced the performance by optimizing the hyperparameters of MTEG classifier. The experimental results conducted based on the various assessment components and validation dataset indicate that the developed method outperformed the other chosen models, achieving precision, recall, and accuracy of 98.5%, 97.9%, and 98.6%, respectively. The other achievements made by the model are offering technical guidance for conducting the precise diagnosis and treatment of plant pathologies with less time of 9 s.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信