富碲过氧化MoTe2锚定MXene片:一种很有前途的锂离子电池负极材料

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2024-10-03 DOI:10.1002/cnma.202400384
Rohan S. Kamat, Chetana U. Mulik, Xijue Wang, Chinmayee Padwal, Abhishek A. Kulkarni, Lata D. Jadhav, Deepak P. Dubal
{"title":"富碲过氧化MoTe2锚定MXene片:一种很有前途的锂离子电池负极材料","authors":"Rohan S. Kamat,&nbsp;Chetana U. Mulik,&nbsp;Xijue Wang,&nbsp;Chinmayee Padwal,&nbsp;Abhishek A. Kulkarni,&nbsp;Lata D. Jadhav,&nbsp;Deepak P. Dubal","doi":"10.1002/cnma.202400384","DOIUrl":null,"url":null,"abstract":"<p>To address the challenge of low electronic and ionic conductivities in lithium-ion batteries (LIBs), we synthesized MoTe<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> via a modified hydrothermal route. This 2D van der Waals composite exhibited a stable reversible specific discharge capacity of 566 mAh/g at 0.1 C (67 mA/g) and retained 71 % of its initial capacity during rate performance tests. Notably, cycling stability tests revealed an increased discharge capacity of 316.4 mAh/g after 564 cycles at 0.4 C (268 mA/g), which improved further to 378.2 mAh/g after 922 cycles at 1 C (670 mA/g). The exceptional electrochemical performance stems from the unique MoTe<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> architecture, enhancing Li<sup>+</sup> site exposure and ensuring structural stability. This composite emerges as a promising and easily synthesizable advanced anode material for LIBs, offering enhanced conductivity and stability.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tellurium Enriched Over-Oxidized MoTe2 Anchored MXene Sheets: A Promising Li-ion Battery Anode Material\",\"authors\":\"Rohan S. Kamat,&nbsp;Chetana U. Mulik,&nbsp;Xijue Wang,&nbsp;Chinmayee Padwal,&nbsp;Abhishek A. Kulkarni,&nbsp;Lata D. Jadhav,&nbsp;Deepak P. Dubal\",\"doi\":\"10.1002/cnma.202400384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To address the challenge of low electronic and ionic conductivities in lithium-ion batteries (LIBs), we synthesized MoTe<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> via a modified hydrothermal route. This 2D van der Waals composite exhibited a stable reversible specific discharge capacity of 566 mAh/g at 0.1 C (67 mA/g) and retained 71 % of its initial capacity during rate performance tests. Notably, cycling stability tests revealed an increased discharge capacity of 316.4 mAh/g after 564 cycles at 0.4 C (268 mA/g), which improved further to 378.2 mAh/g after 922 cycles at 1 C (670 mA/g). The exceptional electrochemical performance stems from the unique MoTe<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> architecture, enhancing Li<sup>+</sup> site exposure and ensuring structural stability. This composite emerges as a promising and easily synthesizable advanced anode material for LIBs, offering enhanced conductivity and stability.</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"10 12\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400384\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400384","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决锂离子电池(LIBs)低电子和离子电导率的挑战,我们通过改进的水热途径合成了MoTe2@Ti3C2Tx。这种二维范德华复合材料在0.1 C (67 mA/g)下具有566 mAh/g的稳定可逆比放电容量,并且在倍率性能测试中保持了71%的初始容量。值得注意的是,循环稳定性测试显示,在0.4 C (268 mA/g)下循环564次后,放电容量增加了316.4 mAh/g,在1 C (670 mA/g)下循环922次后,放电容量进一步提高到378.2 mAh/g。优异的电化学性能源于独特的MoTe2@Ti3C2Tx结构,增强Li+位点暴露并确保结构稳定性。这种复合材料是一种很有前途的、易于合成的先进的锂离子电池阳极材料,具有增强的导电性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tellurium Enriched Over-Oxidized MoTe2 Anchored MXene Sheets: A Promising Li-ion Battery Anode Material

To address the challenge of low electronic and ionic conductivities in lithium-ion batteries (LIBs), we synthesized MoTe2@Ti3C2Tx via a modified hydrothermal route. This 2D van der Waals composite exhibited a stable reversible specific discharge capacity of 566 mAh/g at 0.1 C (67 mA/g) and retained 71 % of its initial capacity during rate performance tests. Notably, cycling stability tests revealed an increased discharge capacity of 316.4 mAh/g after 564 cycles at 0.4 C (268 mA/g), which improved further to 378.2 mAh/g after 922 cycles at 1 C (670 mA/g). The exceptional electrochemical performance stems from the unique MoTe2@Ti3C2Tx architecture, enhancing Li+ site exposure and ensuring structural stability. This composite emerges as a promising and easily synthesizable advanced anode material for LIBs, offering enhanced conductivity and stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信