{"title":"缓解风能系统中的网络物理威胁:工业 4.0 电网的新型安全架构","authors":"Abdulwahid Al Abdulwahid","doi":"10.1186/s42162-024-00449-6","DOIUrl":null,"url":null,"abstract":"<div><p>In Industry 4.0, integrating Cyber-Physical Systems (CPS) within wind energy infrastructures introduces significant cyber-attack vulnerabilities. This paper presents the Hybrid Adaptive Threat Detection and Response System (HATDRS), a novel security architecture designed to enhance the resilience of wind energy systems against evolving cyber threats. The HATDRS model integrates a hybrid machine learning approach, combining supervised logistic regression with adaptive learning mechanisms, providing real-time threat detection and mitigation. This approach was chosen for its ability to integrate labelled data with real-time unsupervised feedback, providing dynamic and accurate threat detection in wind energy systems. The model was evaluated against traditional Intrusion Detection Systems (IDS) and Machine Learning-based Anomaly Detection Systems (ML-ADS) across key metrics, including accuracy, detection rate, false positive rate, response time, System Security Index (SSI), energy loss, and cost-efficiency. The results demonstrate that the HATDRS model outperforms its counterparts, achieving an accuracy of 95.4% and a detection rate of 97.2% while maintaining the lowest false positive rate (3.1%) and response time (500 ms). Additionally, the model achieved the highest SSI value of 88.7, significantly reducing energy loss to 1.5% and improving cost-efficiency to 0.528. These findings underscore the robustness and efficiency of the HATDRS model in mitigating cyber-physical threats in wind energy systems, offering a scalable and effective solution for securing renewable energy infrastructures. Future work will explore further optimization and real-world testing to validate the system’s scalability across diverse energy environments.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00449-6","citationCount":"0","resultStr":"{\"title\":\"Cyber-physical threat mitigation in wind energy systems: a novel secure architecture for industry 4.0 power grids\",\"authors\":\"Abdulwahid Al Abdulwahid\",\"doi\":\"10.1186/s42162-024-00449-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Industry 4.0, integrating Cyber-Physical Systems (CPS) within wind energy infrastructures introduces significant cyber-attack vulnerabilities. This paper presents the Hybrid Adaptive Threat Detection and Response System (HATDRS), a novel security architecture designed to enhance the resilience of wind energy systems against evolving cyber threats. The HATDRS model integrates a hybrid machine learning approach, combining supervised logistic regression with adaptive learning mechanisms, providing real-time threat detection and mitigation. This approach was chosen for its ability to integrate labelled data with real-time unsupervised feedback, providing dynamic and accurate threat detection in wind energy systems. The model was evaluated against traditional Intrusion Detection Systems (IDS) and Machine Learning-based Anomaly Detection Systems (ML-ADS) across key metrics, including accuracy, detection rate, false positive rate, response time, System Security Index (SSI), energy loss, and cost-efficiency. The results demonstrate that the HATDRS model outperforms its counterparts, achieving an accuracy of 95.4% and a detection rate of 97.2% while maintaining the lowest false positive rate (3.1%) and response time (500 ms). Additionally, the model achieved the highest SSI value of 88.7, significantly reducing energy loss to 1.5% and improving cost-efficiency to 0.528. These findings underscore the robustness and efficiency of the HATDRS model in mitigating cyber-physical threats in wind energy systems, offering a scalable and effective solution for securing renewable energy infrastructures. Future work will explore further optimization and real-world testing to validate the system’s scalability across diverse energy environments.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00449-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00449-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00449-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Cyber-physical threat mitigation in wind energy systems: a novel secure architecture for industry 4.0 power grids
In Industry 4.0, integrating Cyber-Physical Systems (CPS) within wind energy infrastructures introduces significant cyber-attack vulnerabilities. This paper presents the Hybrid Adaptive Threat Detection and Response System (HATDRS), a novel security architecture designed to enhance the resilience of wind energy systems against evolving cyber threats. The HATDRS model integrates a hybrid machine learning approach, combining supervised logistic regression with adaptive learning mechanisms, providing real-time threat detection and mitigation. This approach was chosen for its ability to integrate labelled data with real-time unsupervised feedback, providing dynamic and accurate threat detection in wind energy systems. The model was evaluated against traditional Intrusion Detection Systems (IDS) and Machine Learning-based Anomaly Detection Systems (ML-ADS) across key metrics, including accuracy, detection rate, false positive rate, response time, System Security Index (SSI), energy loss, and cost-efficiency. The results demonstrate that the HATDRS model outperforms its counterparts, achieving an accuracy of 95.4% and a detection rate of 97.2% while maintaining the lowest false positive rate (3.1%) and response time (500 ms). Additionally, the model achieved the highest SSI value of 88.7, significantly reducing energy loss to 1.5% and improving cost-efficiency to 0.528. These findings underscore the robustness and efficiency of the HATDRS model in mitigating cyber-physical threats in wind energy systems, offering a scalable and effective solution for securing renewable energy infrastructures. Future work will explore further optimization and real-world testing to validate the system’s scalability across diverse energy environments.