印度、尼泊尔和中国浅层大地震(M≥5.0,深度≤30 km)对电离层影响的统计检测

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Raj Pal Singh, Manish Awasthi, Devbrat Pundhir
{"title":"印度、尼泊尔和中国浅层大地震(M≥5.0,深度≤30 km)对电离层影响的统计检测","authors":"Raj Pal Singh,&nbsp;Manish Awasthi,&nbsp;Devbrat Pundhir","doi":"10.1134/S0016793224600887","DOIUrl":null,"url":null,"abstract":"<p>Using the quartile-based statistical' as this approach is used in the present study approach G-PS-VTEC data of the Lhasa observing station (Geographical Lat. 29.66° N, Geographical Long. 91.10° E) are analysed for six months from July 1, 2019, to December 31, 2019, in the light of eleven major shallow earthquakes (M ≥ 5.0, depth &lt; 30 km) occurred in India, Nepal, and China within a radius of 1500 km assuming it as a center. The results of the analysis show anomalous TEC enhancements of 0.08–15.26 TECU, 1–28 days before the occurrence of these earthquakes. The percentage of TEC enhancements seen before these earthquakes range from 0.74–113.20%. Co-seismic TEC enhancements are also noted for the earthquakes (M = 5, 5.4, 5, 5.3, 5) of August 11, 31, 2019, September 7, 2019, October 27, 2019, and December 9, 2019. The range of co-seismic TEC enhancements is 0.01–4.25 TECU and percentage range of these enhancements is 0.07–31.08%. The post TEC enhancements are observed for the seismic events. The range of post TEC enhancements and percentage enhancements in it are 0.12–6.54 TECU and 1.52–36.41% respectively and the duration of these enhancements is found to vary from 1–21 days. Further, these enhancements in TEC data are also examined in the light of magnetic storms and solar activity and it is found that none of these enhancements are associated with solar activity and magnetic storms. The anomalous days are also confirmed by one more statistical technique. Finally, the possible generation and propagation mechanisms for the observed anomalies are also discussed.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 6","pages":"981 - 994"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Effects of Shallow Major Earthquakes (M ≥ 5.0, depth ≤ 30 km) Occurred in India, Nepal, and China on Ionosphere Using Statistical Approaches\",\"authors\":\"Raj Pal Singh,&nbsp;Manish Awasthi,&nbsp;Devbrat Pundhir\",\"doi\":\"10.1134/S0016793224600887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using the quartile-based statistical' as this approach is used in the present study approach G-PS-VTEC data of the Lhasa observing station (Geographical Lat. 29.66° N, Geographical Long. 91.10° E) are analysed for six months from July 1, 2019, to December 31, 2019, in the light of eleven major shallow earthquakes (M ≥ 5.0, depth &lt; 30 km) occurred in India, Nepal, and China within a radius of 1500 km assuming it as a center. The results of the analysis show anomalous TEC enhancements of 0.08–15.26 TECU, 1–28 days before the occurrence of these earthquakes. The percentage of TEC enhancements seen before these earthquakes range from 0.74–113.20%. Co-seismic TEC enhancements are also noted for the earthquakes (M = 5, 5.4, 5, 5.3, 5) of August 11, 31, 2019, September 7, 2019, October 27, 2019, and December 9, 2019. The range of co-seismic TEC enhancements is 0.01–4.25 TECU and percentage range of these enhancements is 0.07–31.08%. The post TEC enhancements are observed for the seismic events. The range of post TEC enhancements and percentage enhancements in it are 0.12–6.54 TECU and 1.52–36.41% respectively and the duration of these enhancements is found to vary from 1–21 days. Further, these enhancements in TEC data are also examined in the light of magnetic storms and solar activity and it is found that none of these enhancements are associated with solar activity and magnetic storms. The anomalous days are also confirmed by one more statistical technique. Finally, the possible generation and propagation mechanisms for the observed anomalies are also discussed.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":\"64 6\",\"pages\":\"981 - 994\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224600887\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600887","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文采用基于四分位的统计方法,对拉萨观测站(地理纬度29.66°N,地理长91.10°E) 2019年7月1日至2019年12月31日6个月的G-PS-VTEC数据进行了分析,分析了11次主要浅层地震(M≥5.0,深度<;以它为中心,在1500公里半径内的印度、尼泊尔和中国都发生过地震。分析结果表明,在这些地震发生前1 ~ 28天,TEC异常增强幅度为0.08 ~ 15.26 TECU。这些地震前TEC增强的百分比在0.74-113.20%之间。2019年8月11日、31日、2019年9月7日、2019年10月27日和2019年12月9日的同震TEC增强也被注意到(M = 5、5.4、5、5.3和5)。同震TEC增强幅度为0.01 ~ 4.25 TECU,增强百分率为0.07 ~ 31.08%。在地震事件中观察到TEC后的增强。TEC后增强幅度和百分比分别为0.12 ~ 6.54 TECU和1.52 ~ 36.41%,持续时间为1 ~ 21 d。此外,TEC数据中的这些增强也在磁暴和太阳活动的背景下进行了检验,发现这些增强都与太阳活动和磁暴无关。另外一种统计技术也证实了异常日的存在。最后,讨论了观测到的异常可能的产生和传播机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Detection of Effects of Shallow Major Earthquakes (M ≥ 5.0, depth ≤ 30 km) Occurred in India, Nepal, and China on Ionosphere Using Statistical Approaches

Detection of Effects of Shallow Major Earthquakes (M ≥ 5.0, depth ≤ 30 km) Occurred in India, Nepal, and China on Ionosphere Using Statistical Approaches

Using the quartile-based statistical' as this approach is used in the present study approach G-PS-VTEC data of the Lhasa observing station (Geographical Lat. 29.66° N, Geographical Long. 91.10° E) are analysed for six months from July 1, 2019, to December 31, 2019, in the light of eleven major shallow earthquakes (M ≥ 5.0, depth < 30 km) occurred in India, Nepal, and China within a radius of 1500 km assuming it as a center. The results of the analysis show anomalous TEC enhancements of 0.08–15.26 TECU, 1–28 days before the occurrence of these earthquakes. The percentage of TEC enhancements seen before these earthquakes range from 0.74–113.20%. Co-seismic TEC enhancements are also noted for the earthquakes (M = 5, 5.4, 5, 5.3, 5) of August 11, 31, 2019, September 7, 2019, October 27, 2019, and December 9, 2019. The range of co-seismic TEC enhancements is 0.01–4.25 TECU and percentage range of these enhancements is 0.07–31.08%. The post TEC enhancements are observed for the seismic events. The range of post TEC enhancements and percentage enhancements in it are 0.12–6.54 TECU and 1.52–36.41% respectively and the duration of these enhancements is found to vary from 1–21 days. Further, these enhancements in TEC data are also examined in the light of magnetic storms and solar activity and it is found that none of these enhancements are associated with solar activity and magnetic storms. The anomalous days are also confirmed by one more statistical technique. Finally, the possible generation and propagation mechanisms for the observed anomalies are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信