应用人工神经网络从单分量数据中重建矢量磁场

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
R. A. Rytov, V. G. Petrov
{"title":"应用人工神经网络从单分量数据中重建矢量磁场","authors":"R. A. Rytov,&nbsp;V. G. Petrov","doi":"10.1134/S0016793224600425","DOIUrl":null,"url":null,"abstract":"<p>In this work the problem of reconstructing the vector anomalous magnetic field from single-component data was solved by means of artificial neural networks. For training an artificial neural network a database of anomalous magnetic field components <span>\\({{B}_{x}}\\)</span>, <span>\\({{B}_{y}}\\)</span>, <span>\\({{B}_{z}}\\)</span> was created using a set of point magnetic dipoles lying under the field measurement plane. Using a synthetic example, the work of a trained neural network was shown in comparison with a well-known numerical algorithm for restoring a vector field from data of one component. Further, according to the data of the vertical component of the anomalous geomagnetic field the horizontal components of the anomalous geomagnetic field were restored using artificial neural networks in the territory of 58°–85° E, 52°–74° N with a grid step of 2 arc minutes.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 6","pages":"912 - 919"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Artificial Neural Networks for Reconstruction of Vector Magnetic Field from Single-Component Data\",\"authors\":\"R. A. Rytov,&nbsp;V. G. Petrov\",\"doi\":\"10.1134/S0016793224600425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work the problem of reconstructing the vector anomalous magnetic field from single-component data was solved by means of artificial neural networks. For training an artificial neural network a database of anomalous magnetic field components <span>\\\\({{B}_{x}}\\\\)</span>, <span>\\\\({{B}_{y}}\\\\)</span>, <span>\\\\({{B}_{z}}\\\\)</span> was created using a set of point magnetic dipoles lying under the field measurement plane. Using a synthetic example, the work of a trained neural network was shown in comparison with a well-known numerical algorithm for restoring a vector field from data of one component. Further, according to the data of the vertical component of the anomalous geomagnetic field the horizontal components of the anomalous geomagnetic field were restored using artificial neural networks in the territory of 58°–85° E, 52°–74° N with a grid step of 2 arc minutes.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":\"64 6\",\"pages\":\"912 - 919\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224600425\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600425","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,利用人工神经网络解决了从单分量数据重建矢量异常磁场的问题。为了训练人工神经网络,使用位于磁场测量平面下的一组点磁偶极子创建了异常磁场分量数据库(\({{B}_{x}}\), \({{B}_{y}}\), \({{B}_{z}}\))。通过一个合成示例,将训练有素的神经网络与从一个分量的数据还原矢量场的著名数值算法进行了比较,从而展示了训练有素的神经网络的工作情况。此外,根据异常地磁场垂直分量的数据,使用人工神经网络在东经 58°-85°、北纬 52°-74°地区恢复了异常地磁场的水平分量,网格步距为 2 弧分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Application of Artificial Neural Networks for Reconstruction of Vector Magnetic Field from Single-Component Data

Application of Artificial Neural Networks for Reconstruction of Vector Magnetic Field from Single-Component Data

In this work the problem of reconstructing the vector anomalous magnetic field from single-component data was solved by means of artificial neural networks. For training an artificial neural network a database of anomalous magnetic field components \({{B}_{x}}\), \({{B}_{y}}\), \({{B}_{z}}\) was created using a set of point magnetic dipoles lying under the field measurement plane. Using a synthetic example, the work of a trained neural network was shown in comparison with a well-known numerical algorithm for restoring a vector field from data of one component. Further, according to the data of the vertical component of the anomalous geomagnetic field the horizontal components of the anomalous geomagnetic field were restored using artificial neural networks in the territory of 58°–85° E, 52°–74° N with a grid step of 2 arc minutes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信