Mussadiq Abdul Rahim, Muhammad Mushafiq, Sultan Daud Khan, Rafi Ullah, Salabat Khan, Muhammad Ishaque
{"title":"基于技术分析的无监管盘中交易道指股票:长期盈利吗?","authors":"Mussadiq Abdul Rahim, Muhammad Mushafiq, Sultan Daud Khan, Rafi Ullah, Salabat Khan, Muhammad Ishaque","doi":"10.1007/s10489-024-05903-2","DOIUrl":null,"url":null,"abstract":"<div><p>The paradigm shift from conventional stock market trading rings to computer-driven algorithmic trading has given rise to a new era characterized by specialized trading systems and indicators meticulously engineered to decode price charts and enhance the prospects of profitable trading. Nevertheless, despite these notable advancements, the majority of traders continue to grapple with losses rather than realizing gains, echoing the historical pursuit of the elusive philosopher’s stone by alchemists of yore. In response to this challenge, our research delves into the realm of artificial neural networks (ANNs) to cultivate more sophisticated trading methodologies. Our empirical investigations suggest that trading strategies relying on price chart analysis generally achieve a moderate level of accuracy. However, it is imperative to acknowledge that the intricate patterns that materialize over time, coupled with return metrics, persistently elude precise prediction within the framework of unsupervised automated trading. These findings underscore the critical importance of embracing a progressive approach to trading that synergizes human expertise with cutting-edge technological capabilities.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical analysis-based unsupervised intraday trading djia index stocks: is it profitable in long term?\",\"authors\":\"Mussadiq Abdul Rahim, Muhammad Mushafiq, Sultan Daud Khan, Rafi Ullah, Salabat Khan, Muhammad Ishaque\",\"doi\":\"10.1007/s10489-024-05903-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paradigm shift from conventional stock market trading rings to computer-driven algorithmic trading has given rise to a new era characterized by specialized trading systems and indicators meticulously engineered to decode price charts and enhance the prospects of profitable trading. Nevertheless, despite these notable advancements, the majority of traders continue to grapple with losses rather than realizing gains, echoing the historical pursuit of the elusive philosopher’s stone by alchemists of yore. In response to this challenge, our research delves into the realm of artificial neural networks (ANNs) to cultivate more sophisticated trading methodologies. Our empirical investigations suggest that trading strategies relying on price chart analysis generally achieve a moderate level of accuracy. However, it is imperative to acknowledge that the intricate patterns that materialize over time, coupled with return metrics, persistently elude precise prediction within the framework of unsupervised automated trading. These findings underscore the critical importance of embracing a progressive approach to trading that synergizes human expertise with cutting-edge technological capabilities.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 3\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-05903-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05903-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Technical analysis-based unsupervised intraday trading djia index stocks: is it profitable in long term?
The paradigm shift from conventional stock market trading rings to computer-driven algorithmic trading has given rise to a new era characterized by specialized trading systems and indicators meticulously engineered to decode price charts and enhance the prospects of profitable trading. Nevertheless, despite these notable advancements, the majority of traders continue to grapple with losses rather than realizing gains, echoing the historical pursuit of the elusive philosopher’s stone by alchemists of yore. In response to this challenge, our research delves into the realm of artificial neural networks (ANNs) to cultivate more sophisticated trading methodologies. Our empirical investigations suggest that trading strategies relying on price chart analysis generally achieve a moderate level of accuracy. However, it is imperative to acknowledge that the intricate patterns that materialize over time, coupled with return metrics, persistently elude precise prediction within the framework of unsupervised automated trading. These findings underscore the critical importance of embracing a progressive approach to trading that synergizes human expertise with cutting-edge technological capabilities.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.