硫掺杂氧化锌-氧化镍作为高效双功能电催化剂的整体水分解

IF 2.7 4区 化学 Q3 CHEMISTRY, PHYSICAL
Faiq Saeed,  Samia, Mushtaq Ahmad, Waheed Rehman, Yasir Sana, Somavia Ameen, A. S. Altowyan, Amir Zada
{"title":"硫掺杂氧化锌-氧化镍作为高效双功能电催化剂的整体水分解","authors":"Faiq Saeed,&nbsp; Samia,&nbsp;Mushtaq Ahmad,&nbsp;Waheed Rehman,&nbsp;Yasir Sana,&nbsp;Somavia Ameen,&nbsp;A. S. Altowyan,&nbsp;Amir Zada","doi":"10.1007/s12678-024-00896-5","DOIUrl":null,"url":null,"abstract":"<div><p>A mixed sulfur-doped zinc oxide-nickel oxide (S@ZnO-NiO) nanocomposite electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) was prepared by hydrothermal method; we prepared a high-efficiency bifunctional electrocatalyst S@ZnO-NiO. By applying different characterizations, the material was proven as a new phase of (S-doped-ZnO-NiO). S@ZnO-NiO showed excellent performance at 10 mA cm<sup>−2</sup>, the generation potential of OER is 1.45 V, and that of HER is − 0.04 V. Furthermore, when applied for water splitting electrocatalysis, a current density of 10 mA cm<sup>−2</sup> was achieved at 1.49 V with excellent stability for 10 h. S@ZnO-NiO bifunctional catalysts offer great potential for electrochemical devices due to their low cost and high activity. We have successfully constructed an electrocatalyst with the dual functions of HER and OER, which can achieve efficient water splitting.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 1","pages":"15 - 27"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfur-Doped Zinc Oxide-Nikel Oxide as Efficient Bifunctional Electrocatalyst for Overall Water Splitting\",\"authors\":\"Faiq Saeed,&nbsp; Samia,&nbsp;Mushtaq Ahmad,&nbsp;Waheed Rehman,&nbsp;Yasir Sana,&nbsp;Somavia Ameen,&nbsp;A. S. Altowyan,&nbsp;Amir Zada\",\"doi\":\"10.1007/s12678-024-00896-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A mixed sulfur-doped zinc oxide-nickel oxide (S@ZnO-NiO) nanocomposite electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) was prepared by hydrothermal method; we prepared a high-efficiency bifunctional electrocatalyst S@ZnO-NiO. By applying different characterizations, the material was proven as a new phase of (S-doped-ZnO-NiO). S@ZnO-NiO showed excellent performance at 10 mA cm<sup>−2</sup>, the generation potential of OER is 1.45 V, and that of HER is − 0.04 V. Furthermore, when applied for water splitting electrocatalysis, a current density of 10 mA cm<sup>−2</sup> was achieved at 1.49 V with excellent stability for 10 h. S@ZnO-NiO bifunctional catalysts offer great potential for electrochemical devices due to their low cost and high activity. We have successfully constructed an electrocatalyst with the dual functions of HER and OER, which can achieve efficient water splitting.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"16 1\",\"pages\":\"15 - 27\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-024-00896-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-024-00896-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用水热法制备了一种用于析氧反应(OER)和析氢反应(HER)的混合掺硫氧化锌-氧化镍纳米复合电催化剂(S@ZnO-NiO);制备了一种高效双功能电催化剂S@ZnO-NiO。通过不同的表征,证明了该材料是一种新的(s掺杂zno - nio)相。S@ZnO-NiO在10 mA cm−2下表现优异,OER的产生电位为1.45 V, HER的产生电位为- 0.04 V。此外,当应用于水分解电催化时,在1.49 V下获得了10 mA cm−2的电流密度,并且在10 h内具有优异的稳定性S@ZnO-NiO双功能催化剂由于其低成本和高活性而在电化学器件中具有很大的潜力。我们成功构建了一种具有HER和OER双重功能的电催化剂,可以实现高效的水分解。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sulfur-Doped Zinc Oxide-Nikel Oxide as Efficient Bifunctional Electrocatalyst for Overall Water Splitting

A mixed sulfur-doped zinc oxide-nickel oxide (S@ZnO-NiO) nanocomposite electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) was prepared by hydrothermal method; we prepared a high-efficiency bifunctional electrocatalyst S@ZnO-NiO. By applying different characterizations, the material was proven as a new phase of (S-doped-ZnO-NiO). S@ZnO-NiO showed excellent performance at 10 mA cm−2, the generation potential of OER is 1.45 V, and that of HER is − 0.04 V. Furthermore, when applied for water splitting electrocatalysis, a current density of 10 mA cm−2 was achieved at 1.49 V with excellent stability for 10 h. S@ZnO-NiO bifunctional catalysts offer great potential for electrochemical devices due to their low cost and high activity. We have successfully constructed an electrocatalyst with the dual functions of HER and OER, which can achieve efficient water splitting.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrocatalysis
Electrocatalysis CHEMISTRY, PHYSICAL-ELECTROCHEMISTRY
CiteScore
4.80
自引率
6.50%
发文量
93
审稿时长
>12 weeks
期刊介绍: Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies. Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信