利用组织病理学图像对肾细胞癌进行分级的高效增强特征框架

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Faiqa Maqsood, Zhenfei Wang, Muhammad Mumtaz Ali, Baozhi Qiu, Tahir Mahmood, Raheem Sarwar
{"title":"利用组织病理学图像对肾细胞癌进行分级的高效增强特征框架","authors":"Faiqa Maqsood,&nbsp;Zhenfei Wang,&nbsp;Muhammad Mumtaz Ali,&nbsp;Baozhi Qiu,&nbsp;Tahir Mahmood,&nbsp;Raheem Sarwar","doi":"10.1007/s10489-024-06047-z","DOIUrl":null,"url":null,"abstract":"<div><p>Renal cell carcinoma (RCC) represents the primary type of kidney cancer, responsible for approximately 85% of kidney cancer-related fatalities. Precise grading of this cancer is pivotal for tailoring effective treatments. Detecting RCC early, before metastasis, significantly improves survival rates. While Artificial intelligence-based classification methods have emerged for RCC, advancements in accuracy, processing efficiency, and memory utilization remain imperative. This study introduces the Efficient Enhanced Feature Framework (EFF-Net), a deep neural network architecture designed for RCC grading using histopathological image analysis. EFF-Net amalgamates potent feature extraction from convolutional layers with efficient Separable convolutional layers, aiming to accelerate model inference, reduce trainable parameters, mitigate overfitting, and elevate RCC grading precision. Evaluation across three distinct datasets showcases the EFF-Net's outstanding performance: achieving 91.90% accuracy, a precision of 91.4%, a recall of 91.8%, and a harmonic mean of precision and recall (F1 score) of 91.9% on the Kasturba Medical College (KMC) dataset. Additionally, on the Lung and Colon Dataset, EFF-Net achieved 99.8% accuracy, a precision of 99.7%, a recall of 99.9%, and a 98.7% F1 score. Similarly, the Acute Lymphoblastic Leukaemia dataset demonstrated remarkable performance: 99.8% accuracy, a precision of 99%, a recall of 99%, and a 99.7% F1 score. EFF-Net's superior accuracy surpasses existing state-of-the-art approaches while exhibiting reduced trainable parameters and computational requirements.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient enhanced feature framework for grading of renal cell carcinoma using Histopathological Images\",\"authors\":\"Faiqa Maqsood,&nbsp;Zhenfei Wang,&nbsp;Muhammad Mumtaz Ali,&nbsp;Baozhi Qiu,&nbsp;Tahir Mahmood,&nbsp;Raheem Sarwar\",\"doi\":\"10.1007/s10489-024-06047-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Renal cell carcinoma (RCC) represents the primary type of kidney cancer, responsible for approximately 85% of kidney cancer-related fatalities. Precise grading of this cancer is pivotal for tailoring effective treatments. Detecting RCC early, before metastasis, significantly improves survival rates. While Artificial intelligence-based classification methods have emerged for RCC, advancements in accuracy, processing efficiency, and memory utilization remain imperative. This study introduces the Efficient Enhanced Feature Framework (EFF-Net), a deep neural network architecture designed for RCC grading using histopathological image analysis. EFF-Net amalgamates potent feature extraction from convolutional layers with efficient Separable convolutional layers, aiming to accelerate model inference, reduce trainable parameters, mitigate overfitting, and elevate RCC grading precision. Evaluation across three distinct datasets showcases the EFF-Net's outstanding performance: achieving 91.90% accuracy, a precision of 91.4%, a recall of 91.8%, and a harmonic mean of precision and recall (F1 score) of 91.9% on the Kasturba Medical College (KMC) dataset. Additionally, on the Lung and Colon Dataset, EFF-Net achieved 99.8% accuracy, a precision of 99.7%, a recall of 99.9%, and a 98.7% F1 score. Similarly, the Acute Lymphoblastic Leukaemia dataset demonstrated remarkable performance: 99.8% accuracy, a precision of 99%, a recall of 99%, and a 99.7% F1 score. EFF-Net's superior accuracy surpasses existing state-of-the-art approaches while exhibiting reduced trainable parameters and computational requirements.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 3\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06047-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06047-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

肾细胞癌(RCC)是肾癌的主要类型,约占肾癌相关死亡人数的85%。这种癌症的精确分级是定制有效治疗的关键。早期发现RCC,在转移之前,可以显著提高生存率。虽然基于人工智能的分类方法已经出现在RCC中,但准确性、处理效率和内存利用率的进步仍然是必不可少的。本研究介绍了高效增强特征框架(ef - net),这是一种深度神经网络架构,用于使用组织病理学图像分析对RCC进行分级。ef - net将有效的卷积层特征提取与高效的可分离卷积层相结合,旨在加速模型推理,减少可训练参数,缓解过拟合,提高RCC分级精度。对三个不同数据集的评估显示了ef - net的出色性能:在Kasturba医学院(KMC)数据集上实现了91.90%的准确率、91.4%的精度、91.8%的召回率和91.9%的准确率和召回率调和平均值(F1分数)。此外,在肺和结肠数据集上,ef - net的准确率为99.8%,精密度为99.7%,召回率为99.9%,F1得分为98.7%。同样,急性淋巴细胞白血病数据集也表现出了显著的性能:99.8%的准确率,99%的精度,99%的召回率和99.7%的F1分数。ef - net优越的精度超过了现有的最先进的方法,同时显示出减少的可训练参数和计算要求。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient enhanced feature framework for grading of renal cell carcinoma using Histopathological Images

Renal cell carcinoma (RCC) represents the primary type of kidney cancer, responsible for approximately 85% of kidney cancer-related fatalities. Precise grading of this cancer is pivotal for tailoring effective treatments. Detecting RCC early, before metastasis, significantly improves survival rates. While Artificial intelligence-based classification methods have emerged for RCC, advancements in accuracy, processing efficiency, and memory utilization remain imperative. This study introduces the Efficient Enhanced Feature Framework (EFF-Net), a deep neural network architecture designed for RCC grading using histopathological image analysis. EFF-Net amalgamates potent feature extraction from convolutional layers with efficient Separable convolutional layers, aiming to accelerate model inference, reduce trainable parameters, mitigate overfitting, and elevate RCC grading precision. Evaluation across three distinct datasets showcases the EFF-Net's outstanding performance: achieving 91.90% accuracy, a precision of 91.4%, a recall of 91.8%, and a harmonic mean of precision and recall (F1 score) of 91.9% on the Kasturba Medical College (KMC) dataset. Additionally, on the Lung and Colon Dataset, EFF-Net achieved 99.8% accuracy, a precision of 99.7%, a recall of 99.9%, and a 98.7% F1 score. Similarly, the Acute Lymphoblastic Leukaemia dataset demonstrated remarkable performance: 99.8% accuracy, a precision of 99%, a recall of 99%, and a 99.7% F1 score. EFF-Net's superior accuracy surpasses existing state-of-the-art approaches while exhibiting reduced trainable parameters and computational requirements.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信