KMSharing:网络边缘高效数据共享的框架和空间抽象

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yuchen Sun;Lailong Luo;Deke Guo;Li Liu;Junjie Xie
{"title":"KMSharing:网络边缘高效数据共享的框架和空间抽象","authors":"Yuchen Sun;Lailong Luo;Deke Guo;Li Liu;Junjie Xie","doi":"10.1109/TNET.2024.3465844","DOIUrl":null,"url":null,"abstract":"Edge storage promises to be crucial for edge computing infrastructure, which enables users to access data within a low delay from widespread storage nodes at the network edge. The key challenge is how to integrate massive geographically distributed weak edge nodes to form an efficient storage system, enabling users to launch data operations from any node or retrieve the desired data across the entire distributed system. To address this data-sharing problem, researchers from both the traditional peer-to-peer (P2P) overlay networking and emerging edge computing fields have proposed some decentralized indexing mechanisms. However, existing studies lack insightful descriptions and analyses about the nature of the data-sharing problem at the network edge. It motivates us to rethink the edge data-sharing framework and provide the problem reformulation for analyzing the limitations of existing schemes. We reveal that the existing data-sharing schemes fail in complex network topologies which can be regarded as high-dimensional network spaces beyond the representation of low-dimensional Euclidean spaces or other existing hash spaces. A better space abstraction is an urgent need to alleviate the performance degradation due to the dimensional mismatch between network spaces and virtual spaces. To fill this gap, this paper proposes the Kautz metric space, a novel space abstraction extended from Kautz graphs, where the coordinates and the metric are defined as Kautz strings and Kautz distances (i.e., the shortest distances in undirected Kautz graphs), respectively. We design a dynamic programming algorithm to directly compute the Kautz distances. Then, we propose KMSharing, an efficient edge data-sharing scheme: both nodes and data are represented in a Kautz metric space, where the Kautz distance of any two Kautz strings reflects the network delay of the corresponding nodes. The workflow of KMSharing consists of three core components: the virtual address allocation represents edge nodes in the Kautz metric space; the data-to-node mapping ensures the uniqueness of target nodes; and forwarding table construction ensures the data delivery. Theoretical analyses confirm that KMSharing ideally achieves \n<inline-formula> <tex-math>$\\mathcal {O}\\left ({{ \\tau }}\\right)$ </tex-math></inline-formula>\n network delays, \n<inline-formula> <tex-math>$\\mathcal {O}\\left ({{ \\log N }}\\right)$ </tex-math></inline-formula>\n overlay hops, and \n<inline-formula> <tex-math>$\\mathcal {O}\\left ({{ 1 }}\\right)$ </tex-math></inline-formula>\n forwarding entries in an N-node edge system with the network radius \n<inline-formula> <tex-math>$\\tau $ </tex-math></inline-formula>\n, while the successive ensuring data delivery. Its worst-case network delay \n<inline-formula> <tex-math>$\\mathcal {O}\\left ({{ \\tau \\log N }}\\right)$ </tex-math></inline-formula>\n is also much better than \n<inline-formula> <tex-math>${\\mathcal {O}\\left ({{ \\tau N^{\\alpha } }}\\right)},\\alpha \\mathrm {\\in }(0,1)$ </tex-math></inline-formula>\n, the worst case of the baselines using Euclidean spaces. Evaluation on various network topologies also shows that our KMSharing effectively reduces network delays and indexing costs than existing data-sharing schemes.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5440-5458"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KMSharing: The Framework and Space Abstraction for Efficient Data Sharing at the Network Edge\",\"authors\":\"Yuchen Sun;Lailong Luo;Deke Guo;Li Liu;Junjie Xie\",\"doi\":\"10.1109/TNET.2024.3465844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge storage promises to be crucial for edge computing infrastructure, which enables users to access data within a low delay from widespread storage nodes at the network edge. The key challenge is how to integrate massive geographically distributed weak edge nodes to form an efficient storage system, enabling users to launch data operations from any node or retrieve the desired data across the entire distributed system. To address this data-sharing problem, researchers from both the traditional peer-to-peer (P2P) overlay networking and emerging edge computing fields have proposed some decentralized indexing mechanisms. However, existing studies lack insightful descriptions and analyses about the nature of the data-sharing problem at the network edge. It motivates us to rethink the edge data-sharing framework and provide the problem reformulation for analyzing the limitations of existing schemes. We reveal that the existing data-sharing schemes fail in complex network topologies which can be regarded as high-dimensional network spaces beyond the representation of low-dimensional Euclidean spaces or other existing hash spaces. A better space abstraction is an urgent need to alleviate the performance degradation due to the dimensional mismatch between network spaces and virtual spaces. To fill this gap, this paper proposes the Kautz metric space, a novel space abstraction extended from Kautz graphs, where the coordinates and the metric are defined as Kautz strings and Kautz distances (i.e., the shortest distances in undirected Kautz graphs), respectively. We design a dynamic programming algorithm to directly compute the Kautz distances. Then, we propose KMSharing, an efficient edge data-sharing scheme: both nodes and data are represented in a Kautz metric space, where the Kautz distance of any two Kautz strings reflects the network delay of the corresponding nodes. The workflow of KMSharing consists of three core components: the virtual address allocation represents edge nodes in the Kautz metric space; the data-to-node mapping ensures the uniqueness of target nodes; and forwarding table construction ensures the data delivery. Theoretical analyses confirm that KMSharing ideally achieves \\n<inline-formula> <tex-math>$\\\\mathcal {O}\\\\left ({{ \\\\tau }}\\\\right)$ </tex-math></inline-formula>\\n network delays, \\n<inline-formula> <tex-math>$\\\\mathcal {O}\\\\left ({{ \\\\log N }}\\\\right)$ </tex-math></inline-formula>\\n overlay hops, and \\n<inline-formula> <tex-math>$\\\\mathcal {O}\\\\left ({{ 1 }}\\\\right)$ </tex-math></inline-formula>\\n forwarding entries in an N-node edge system with the network radius \\n<inline-formula> <tex-math>$\\\\tau $ </tex-math></inline-formula>\\n, while the successive ensuring data delivery. Its worst-case network delay \\n<inline-formula> <tex-math>$\\\\mathcal {O}\\\\left ({{ \\\\tau \\\\log N }}\\\\right)$ </tex-math></inline-formula>\\n is also much better than \\n<inline-formula> <tex-math>${\\\\mathcal {O}\\\\left ({{ \\\\tau N^{\\\\alpha } }}\\\\right)},\\\\alpha \\\\mathrm {\\\\in }(0,1)$ </tex-math></inline-formula>\\n, the worst case of the baselines using Euclidean spaces. Evaluation on various network topologies also shows that our KMSharing effectively reduces network delays and indexing costs than existing data-sharing schemes.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 6\",\"pages\":\"5440-5458\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713188/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10713188/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

边缘存储对于边缘计算基础设施至关重要,它使用户能够在低延迟的情况下从网络边缘的广泛存储节点访问数据。关键的挑战是如何整合大量地理分布的弱边缘节点,形成一个高效的存储系统,使用户能够从任何节点发起数据操作,或者在整个分布式系统中检索所需的数据。为了解决这一数据共享问题,传统的P2P覆盖网络和新兴的边缘计算领域的研究人员都提出了一些分散的索引机制。然而,现有研究缺乏对网络边缘数据共享问题本质的深刻描述和分析。它促使我们重新思考边缘数据共享框架,并为分析现有方案的局限性提供问题重构。我们揭示了现有的数据共享方案在复杂的网络拓扑中失败,这些网络拓扑可以被视为高维网络空间,超越了低维欧几里得空间或其他现有哈希空间的表示。为了缓解由于网络空间和虚拟空间之间的维度不匹配而导致的性能下降,迫切需要更好的空间抽象。为了填补这一空白,本文提出了Kautz度量空间,这是由Kautz图扩展而来的一种新的空间抽象,其中坐标和度量分别定义为Kautz弦和Kautz距离(即无向Kautz图中的最短距离)。我们设计了一种动态规划算法来直接计算Kautz距离。然后,我们提出了一种有效的边缘数据共享方案KMSharing:节点和数据都在一个Kautz度量空间中表示,其中任意两个Kautz字符串的Kautz距离反映了相应节点的网络延迟。KMSharing的工作流程由三个核心部分组成:虚拟地址分配表示Kautz度量空间中的边缘节点;数据到节点的映射保证了目标节点的唯一性;转发表的构造保证了数据的传递。理论分析证实,在网络半径为$\tau $的n节点边缘系统中,KMSharing理想地实现了$\mathcal {O}\left ({{ \tau }}\right)$网络时延、$\mathcal {O}\left ({{ \log N }}\right)$覆盖跳数和$\mathcal {O}\left ({{ 1 }}\right)$转发表项,同时连续保证了数据的传输。它的最坏情况网络延迟$\mathcal {O}\left ({{ \tau \log N }}\right)$也比${\mathcal {O}\left ({{ \tau N^{\alpha } }}\right)},\alpha \mathrm {\in }(0,1)$好得多,是使用欧几里得空间的基线的最坏情况。对各种网络拓扑的评估也表明,我们的KMSharing比现有的数据共享方案有效地降低了网络延迟和索引成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KMSharing: The Framework and Space Abstraction for Efficient Data Sharing at the Network Edge
Edge storage promises to be crucial for edge computing infrastructure, which enables users to access data within a low delay from widespread storage nodes at the network edge. The key challenge is how to integrate massive geographically distributed weak edge nodes to form an efficient storage system, enabling users to launch data operations from any node or retrieve the desired data across the entire distributed system. To address this data-sharing problem, researchers from both the traditional peer-to-peer (P2P) overlay networking and emerging edge computing fields have proposed some decentralized indexing mechanisms. However, existing studies lack insightful descriptions and analyses about the nature of the data-sharing problem at the network edge. It motivates us to rethink the edge data-sharing framework and provide the problem reformulation for analyzing the limitations of existing schemes. We reveal that the existing data-sharing schemes fail in complex network topologies which can be regarded as high-dimensional network spaces beyond the representation of low-dimensional Euclidean spaces or other existing hash spaces. A better space abstraction is an urgent need to alleviate the performance degradation due to the dimensional mismatch between network spaces and virtual spaces. To fill this gap, this paper proposes the Kautz metric space, a novel space abstraction extended from Kautz graphs, where the coordinates and the metric are defined as Kautz strings and Kautz distances (i.e., the shortest distances in undirected Kautz graphs), respectively. We design a dynamic programming algorithm to directly compute the Kautz distances. Then, we propose KMSharing, an efficient edge data-sharing scheme: both nodes and data are represented in a Kautz metric space, where the Kautz distance of any two Kautz strings reflects the network delay of the corresponding nodes. The workflow of KMSharing consists of three core components: the virtual address allocation represents edge nodes in the Kautz metric space; the data-to-node mapping ensures the uniqueness of target nodes; and forwarding table construction ensures the data delivery. Theoretical analyses confirm that KMSharing ideally achieves $\mathcal {O}\left ({{ \tau }}\right)$ network delays, $\mathcal {O}\left ({{ \log N }}\right)$ overlay hops, and $\mathcal {O}\left ({{ 1 }}\right)$ forwarding entries in an N-node edge system with the network radius $\tau $ , while the successive ensuring data delivery. Its worst-case network delay $\mathcal {O}\left ({{ \tau \log N }}\right)$ is also much better than ${\mathcal {O}\left ({{ \tau N^{\alpha } }}\right)},\alpha \mathrm {\in }(0,1)$ , the worst case of the baselines using Euclidean spaces. Evaluation on various network topologies also shows that our KMSharing effectively reduces network delays and indexing costs than existing data-sharing schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信