IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Peng Zhang
{"title":"Combining Capacity and Length: Finding Connectivity Bottleneck in a Layered Network","authors":"Peng Zhang","doi":"10.1109/TNET.2024.3466522","DOIUrl":null,"url":null,"abstract":"Computer networks are often multi-layered. For simplicity, let us focus on two-layered networks with logical layer and physical layer. Such a network can be modeled as a labeled graph \n<inline-formula> <tex-math>$G = (V, E)$ </tex-math></inline-formula>\n with a label set \n<inline-formula> <tex-math>$L = \\{\\ell _{1}, \\ell _{2}, {\\dots }, \\ell _{q} \\}$ </tex-math></inline-formula>\n, in which each edge (denotes logical connection) \n<inline-formula> <tex-math>$e \\in E$ </tex-math></inline-formula>\n has a label (denotes physical link) \n<inline-formula> <tex-math>$\\ell (e)$ </tex-math></inline-formula>\n from L. The key issue is that different edges may have the same label. In the weighted minimum Label s-t Cut problem, we are given a labeled graph \n<inline-formula> <tex-math>$G=(V,E)$ </tex-math></inline-formula>\n with label set L, where each label \n<inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>\n has a nonnegative weight \n<inline-formula> <tex-math>$w_{\\ell } $ </tex-math></inline-formula>\n, a source \n<inline-formula> <tex-math>$s \\in V$ </tex-math></inline-formula>\n and a sink \n<inline-formula> <tex-math>$t \\in V$ </tex-math></inline-formula>\n. The problem asks to find a minimum weight label subset \n<inline-formula> <tex-math>$L'$ </tex-math></inline-formula>\n (called a label s-t cut) such that the removal of all edges with labels in \n<inline-formula> <tex-math>$L'$ </tex-math></inline-formula>\n disconnects s and t. Label s-t cut depicts the connectivity bottleneck of a layered network. It is a natural generalization of the edge connectivity of a graph. In this paper, we provide an approximation algorithm for the weighted Label s-t Cut problem with ratio \n<inline-formula> <tex-math>$O(n^{2/3})$ </tex-math></inline-formula>\n, where n is the number of vertices. This is the first approximation algorithm for the problem whose ratio is given in terms of n. The key point of the algorithm is a mechanism to interpret label weight on an edge as both its length (as in the Shortest s-t Path problem) and capacity (as in the Min s-t Cut problem). Experiments on random graphs show that the algorithm has also good practical performance.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5430-5439"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10702375/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

计算机网络通常是多层的。为简单起见,让我们重点讨论具有逻辑层和物理层的两层网络。这样的网络可以建模为一个标签图 $G = (V, E)$ ,标签集为 $L = \{\ell _{1}, \ell _{2}, {\dots }, \ell _{q}\关键问题是不同的边可能有相同的标签。在加权最小标签 s-t 剪切问题中,我们给定了一个带标签集 L 的标签图 $G=(V,E)$,其中每个标签 $\ell $ 都有一个非负权重 $w_\{ell}$,一个源 $s (在 V$ 中)和一个汇 $t (在 V$ 中)。这个问题要求找到一个权重最小的标签子集 $L'$(称为标签 s-t 切分),使得删除所有标签在 $L'$ 中的边可以断开 s 和 t 的连接。标签 s-t 切分描述了分层网络的连接瓶颈。它是对图的边连接性的自然概括。本文为加权标签 s-t 剪切问题提供了一种近似算法,其比率为 $O(n^{2/3})$ ,其中 n 是顶点数。这是第一个以 n 为比率的近似算法。该算法的关键点在于一种机制,可以将边上的标签权重解释为长度(如最短 s-t 路径问题)和容量(如最小 s-t 剪切问题)。随机图上的实验表明,该算法也具有良好的实用性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Capacity and Length: Finding Connectivity Bottleneck in a Layered Network
Computer networks are often multi-layered. For simplicity, let us focus on two-layered networks with logical layer and physical layer. Such a network can be modeled as a labeled graph $G = (V, E)$ with a label set $L = \{\ell _{1}, \ell _{2}, {\dots }, \ell _{q} \}$ , in which each edge (denotes logical connection) $e \in E$ has a label (denotes physical link) $\ell (e)$ from L. The key issue is that different edges may have the same label. In the weighted minimum Label s-t Cut problem, we are given a labeled graph $G=(V,E)$ with label set L, where each label $\ell $ has a nonnegative weight $w_{\ell } $ , a source $s \in V$ and a sink $t \in V$ . The problem asks to find a minimum weight label subset $L'$ (called a label s-t cut) such that the removal of all edges with labels in $L'$ disconnects s and t. Label s-t cut depicts the connectivity bottleneck of a layered network. It is a natural generalization of the edge connectivity of a graph. In this paper, we provide an approximation algorithm for the weighted Label s-t Cut problem with ratio $O(n^{2/3})$ , where n is the number of vertices. This is the first approximation algorithm for the problem whose ratio is given in terms of n. The key point of the algorithm is a mechanism to interpret label weight on an edge as both its length (as in the Shortest s-t Path problem) and capacity (as in the Min s-t Cut problem). Experiments on random graphs show that the algorithm has also good practical performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信