{"title":"Graph-based multi-label feature selection with dynamic graph constraints and latent representation learning","authors":"Jianxia Bai, Yanhong Wu","doi":"10.1007/s10489-024-06116-3","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, multi-label feature selection with joint manifold learning and linear mapping has received much attention. However, the low-quality graph matrix used by existing methods leads to model limitations. Traditional linear mapping cannot learn the coupling relationship between different outputs. In addition, existing approaches ignore latent supervisory information in label correlation. To this end, we obtain a dynamic graph matrix with Laplace rank constraints by the <span>\\(L_{1}\\)</span> norm with a conventional graph matrix. We also mine more reliable supervised information from label correlations by introducing latent representation learning. Moreover, we integrate all the above terms into a linear mapping learning framework based on improved matrix decomposition, and design a simple and effective scheme based on alternating iterations to optimize this framework. Numerous experimental results validate the competitive advantage of the proposed method over existing state-of-the-art methods.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06116-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Graph-based multi-label feature selection with dynamic graph constraints and latent representation learning
Currently, multi-label feature selection with joint manifold learning and linear mapping has received much attention. However, the low-quality graph matrix used by existing methods leads to model limitations. Traditional linear mapping cannot learn the coupling relationship between different outputs. In addition, existing approaches ignore latent supervisory information in label correlation. To this end, we obtain a dynamic graph matrix with Laplace rank constraints by the \(L_{1}\) norm with a conventional graph matrix. We also mine more reliable supervised information from label correlations by introducing latent representation learning. Moreover, we integrate all the above terms into a linear mapping learning framework based on improved matrix decomposition, and design a simple and effective scheme based on alternating iterations to optimize this framework. Numerous experimental results validate the competitive advantage of the proposed method over existing state-of-the-art methods.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.