{"title":"ISAC 系统中基于扩散模型的电磁特性传感","authors":"Yuhua Jiang;Feifei Gao;Shi Jin;Tie Jun Cui","doi":"10.1109/TWC.2024.3516008","DOIUrl":null,"url":null,"abstract":"Integrated sensing and communications (ISAC) has opened up numerous game-changing opportunities for future wireless systems. In this paper, we develop a novel ISAC scheme that utilizes the diffusion model to sense the electromagnetic (EM) property of the target in a predetermined sensing area. Specifically, we first estimate the sensing channel by using both the communications and the sensing signals echoed back from the target. Then we employ the diffusion model to generate the point cloud that represents the target and thus enables 3D visualization of the target’s EM property distribution. In order to minimize the mean Chamfer distance (MCD) between the ground truth and the estimated point clouds, we further design the communications and sensing beamforming matrices under the constraint of a maximum transmit power and a minimum communications achievable rate for each user equipment (UE). Simulation results demonstrate the efficacy of the proposed method in achieving high-quality reconstruction of the target’s shape, relative permittivity, and conductivity. Besides, the proposed method can sense the EM property of the target effectively in any position of the sensing area.","PeriodicalId":13431,"journal":{"name":"IEEE Transactions on Wireless Communications","volume":"24 3","pages":"2036-2051"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic Property Sensing Based on Diffusion Model in ISAC System\",\"authors\":\"Yuhua Jiang;Feifei Gao;Shi Jin;Tie Jun Cui\",\"doi\":\"10.1109/TWC.2024.3516008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated sensing and communications (ISAC) has opened up numerous game-changing opportunities for future wireless systems. In this paper, we develop a novel ISAC scheme that utilizes the diffusion model to sense the electromagnetic (EM) property of the target in a predetermined sensing area. Specifically, we first estimate the sensing channel by using both the communications and the sensing signals echoed back from the target. Then we employ the diffusion model to generate the point cloud that represents the target and thus enables 3D visualization of the target’s EM property distribution. In order to minimize the mean Chamfer distance (MCD) between the ground truth and the estimated point clouds, we further design the communications and sensing beamforming matrices under the constraint of a maximum transmit power and a minimum communications achievable rate for each user equipment (UE). Simulation results demonstrate the efficacy of the proposed method in achieving high-quality reconstruction of the target’s shape, relative permittivity, and conductivity. Besides, the proposed method can sense the EM property of the target effectively in any position of the sensing area.\",\"PeriodicalId\":13431,\"journal\":{\"name\":\"IEEE Transactions on Wireless Communications\",\"volume\":\"24 3\",\"pages\":\"2036-2051\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10810272/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10810272/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Electromagnetic Property Sensing Based on Diffusion Model in ISAC System
Integrated sensing and communications (ISAC) has opened up numerous game-changing opportunities for future wireless systems. In this paper, we develop a novel ISAC scheme that utilizes the diffusion model to sense the electromagnetic (EM) property of the target in a predetermined sensing area. Specifically, we first estimate the sensing channel by using both the communications and the sensing signals echoed back from the target. Then we employ the diffusion model to generate the point cloud that represents the target and thus enables 3D visualization of the target’s EM property distribution. In order to minimize the mean Chamfer distance (MCD) between the ground truth and the estimated point clouds, we further design the communications and sensing beamforming matrices under the constraint of a maximum transmit power and a minimum communications achievable rate for each user equipment (UE). Simulation results demonstrate the efficacy of the proposed method in achieving high-quality reconstruction of the target’s shape, relative permittivity, and conductivity. Besides, the proposed method can sense the EM property of the target effectively in any position of the sensing area.
期刊介绍:
The IEEE Transactions on Wireless Communications is a prestigious publication that showcases cutting-edge advancements in wireless communications. It welcomes both theoretical and practical contributions in various areas. The scope of the Transactions encompasses a wide range of topics, including modulation and coding, detection and estimation, propagation and channel characterization, and diversity techniques. The journal also emphasizes the physical and link layer communication aspects of network architectures and protocols.
The journal is open to papers on specific topics or non-traditional topics related to specific application areas. This includes simulation tools and methodologies, orthogonal frequency division multiplexing, MIMO systems, and wireless over optical technologies.
Overall, the IEEE Transactions on Wireless Communications serves as a platform for high-quality manuscripts that push the boundaries of wireless communications and contribute to advancements in the field.