Ashley N. Prow-Fleischer , Zunli Lu , Clara L. Blättler , Tianchen He , Pulkit Singh , Preston Cosslett Kemeny , Jordan P. Todes , Alexandre Pohl , Tripti Bhattacharya , Bas van de Schootbrugge , Paul B. Wignall , Simona Todaro , Jonathan L. Payne
{"title":"钙同位素支持特提斯-欧洲边缘三叠纪-侏罗纪边界的空间氧化还原梯度","authors":"Ashley N. Prow-Fleischer , Zunli Lu , Clara L. Blättler , Tianchen He , Pulkit Singh , Preston Cosslett Kemeny , Jordan P. Todes , Alexandre Pohl , Tripti Bhattacharya , Bas van de Schootbrugge , Paul B. Wignall , Simona Todaro , Jonathan L. Payne","doi":"10.1016/j.chemgeo.2024.122530","DOIUrl":null,"url":null,"abstract":"<div><div>The end-Triassic mass extinction was among the most severe biotic crises of the Phanerozoic. It has been linked with the global expansion of marine anoxia, and the prolongation of these conditions within epeiric seas has been proposed as a cause for the suppression of biodiversity during the early Jurassic Hettangian Stage. Testing this interpretation is complicated by spatially heterogeneous patterns of local marine redox conditions within the western Tethys European Epicontinental Shelf. In this study, we assess the redox state within this region by focusing on two carbonate successions in Italy, a peritidal platform at Mount Sparagio, Sicily, and an offshore ramp deposit at Val Adrara in the Southern Alps. Based on previously published I/Ca ratios, these locations record distinct local background redox conditions, with Val Adrara showing a notably lower pre-extinction oxygen saturation state than Mount Sparagio. Here, we measure δ<sup>13</sup>C and δ<sup>18</sup>O at Mount Sparagio and δ<sup>44</sup>Ca and trace element ratios at both sites to identify the roles of mineralogical and diagenetic effects on the preservation of primary redox signals. A numerical framework of multiple elemental (Sr, Mg, Mn, I) and isotopic (δ<sup>13</sup>C, δ<sup>18</sup>O, δ<sup>44</sup>Ca, δ<sup>238</sup>U, and δ<sup>34</sup>S<sub>CAS</sub>) ratios was constructed to recognize modes of carbonate diagenesis and source-mixing in the data. While diagenesis is impossible to completely rule out, our state-of-the-art approach provides robust evidence against common forms of diagenetic alteration as the main drivers of the overall paleoredox proxy trends.</div><div>Where the redox signals are largely preserved, we interpret differences in pre-extinction I/Ca between the two sites to reflect distinct local oxygenation states. Drawing from published Community Earth System Model simulations, we propose that ocean circulation and hydrological regime could have been important drivers of spatial heterogeneity in paleo-redox conditions across the European Epicontinental Shelf.</div></div>","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"673 ","pages":"Article 122530"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium isotopes support spatial redox gradients on the Tethys European margin across the Triassic-Jurassic boundary\",\"authors\":\"Ashley N. Prow-Fleischer , Zunli Lu , Clara L. Blättler , Tianchen He , Pulkit Singh , Preston Cosslett Kemeny , Jordan P. Todes , Alexandre Pohl , Tripti Bhattacharya , Bas van de Schootbrugge , Paul B. Wignall , Simona Todaro , Jonathan L. Payne\",\"doi\":\"10.1016/j.chemgeo.2024.122530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The end-Triassic mass extinction was among the most severe biotic crises of the Phanerozoic. It has been linked with the global expansion of marine anoxia, and the prolongation of these conditions within epeiric seas has been proposed as a cause for the suppression of biodiversity during the early Jurassic Hettangian Stage. Testing this interpretation is complicated by spatially heterogeneous patterns of local marine redox conditions within the western Tethys European Epicontinental Shelf. In this study, we assess the redox state within this region by focusing on two carbonate successions in Italy, a peritidal platform at Mount Sparagio, Sicily, and an offshore ramp deposit at Val Adrara in the Southern Alps. Based on previously published I/Ca ratios, these locations record distinct local background redox conditions, with Val Adrara showing a notably lower pre-extinction oxygen saturation state than Mount Sparagio. Here, we measure δ<sup>13</sup>C and δ<sup>18</sup>O at Mount Sparagio and δ<sup>44</sup>Ca and trace element ratios at both sites to identify the roles of mineralogical and diagenetic effects on the preservation of primary redox signals. A numerical framework of multiple elemental (Sr, Mg, Mn, I) and isotopic (δ<sup>13</sup>C, δ<sup>18</sup>O, δ<sup>44</sup>Ca, δ<sup>238</sup>U, and δ<sup>34</sup>S<sub>CAS</sub>) ratios was constructed to recognize modes of carbonate diagenesis and source-mixing in the data. While diagenesis is impossible to completely rule out, our state-of-the-art approach provides robust evidence against common forms of diagenetic alteration as the main drivers of the overall paleoredox proxy trends.</div><div>Where the redox signals are largely preserved, we interpret differences in pre-extinction I/Ca between the two sites to reflect distinct local oxygenation states. Drawing from published Community Earth System Model simulations, we propose that ocean circulation and hydrological regime could have been important drivers of spatial heterogeneity in paleo-redox conditions across the European Epicontinental Shelf.</div></div>\",\"PeriodicalId\":9847,\"journal\":{\"name\":\"Chemical Geology\",\"volume\":\"673 \",\"pages\":\"Article 122530\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009254124006107\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009254124006107","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Calcium isotopes support spatial redox gradients on the Tethys European margin across the Triassic-Jurassic boundary
The end-Triassic mass extinction was among the most severe biotic crises of the Phanerozoic. It has been linked with the global expansion of marine anoxia, and the prolongation of these conditions within epeiric seas has been proposed as a cause for the suppression of biodiversity during the early Jurassic Hettangian Stage. Testing this interpretation is complicated by spatially heterogeneous patterns of local marine redox conditions within the western Tethys European Epicontinental Shelf. In this study, we assess the redox state within this region by focusing on two carbonate successions in Italy, a peritidal platform at Mount Sparagio, Sicily, and an offshore ramp deposit at Val Adrara in the Southern Alps. Based on previously published I/Ca ratios, these locations record distinct local background redox conditions, with Val Adrara showing a notably lower pre-extinction oxygen saturation state than Mount Sparagio. Here, we measure δ13C and δ18O at Mount Sparagio and δ44Ca and trace element ratios at both sites to identify the roles of mineralogical and diagenetic effects on the preservation of primary redox signals. A numerical framework of multiple elemental (Sr, Mg, Mn, I) and isotopic (δ13C, δ18O, δ44Ca, δ238U, and δ34SCAS) ratios was constructed to recognize modes of carbonate diagenesis and source-mixing in the data. While diagenesis is impossible to completely rule out, our state-of-the-art approach provides robust evidence against common forms of diagenetic alteration as the main drivers of the overall paleoredox proxy trends.
Where the redox signals are largely preserved, we interpret differences in pre-extinction I/Ca between the two sites to reflect distinct local oxygenation states. Drawing from published Community Earth System Model simulations, we propose that ocean circulation and hydrological regime could have been important drivers of spatial heterogeneity in paleo-redox conditions across the European Epicontinental Shelf.
期刊介绍:
Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry.
The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry.
Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry.
The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.