IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Kirtee Kumar, Vinod Prasad
{"title":"Analysis of Shannon Entropy and Quantum States of a Confined Hydrogen Atom Screened by the Hellmann Potential","authors":"Kirtee Kumar, Vinod Prasad","doi":"10.1002/adts.202401194","DOIUrl":null,"url":null,"abstract":"This study investigates the impact of spatial confinement and the Hellmann potential on the Shannon entropy of a hydrogenic atom. A hydrogenic atom screened by the Hellmann potential and confined within an impenetrable spherical potential is analyzed. The Schrödinger equation is solved numerically using the finite difference method to determine energy eigenvalues and wavefunctions. These wavefunctions are examined in both position and momentum spaces to calculate the Shannon entropy in position space <span data-altimg=\"/cms/asset/2ed86cb3-e2c1-4cf5-b3ec-c80dbf10d325/adts202401194-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401194-math-0001.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript rho\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.032em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401194:adts202401194-math-0001\" display=\"inline\" location=\"graphic/adts202401194-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript rho\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">S</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ρ</mi></msub>$S_\\rho$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, the Shannon entropy in momentum space <span data-altimg=\"/cms/asset/1c9a9dae-d664-4695-acac-cc1a1694b59f/adts202401194-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401194-math-0002.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript gamma\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.032em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401194:adts202401194-math-0002\" display=\"inline\" location=\"graphic/adts202401194-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript gamma\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">S</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">γ</mi></msub>$S_\\gamma$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, and the total Shannon entropy <span data-altimg=\"/cms/asset/7829e315-3c34-4d71-b055-ec1c9051796e/adts202401194-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401194-math-0003.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript upper T\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.032em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401194:adts202401194-math-0003\" display=\"inline\" location=\"graphic/adts202401194-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript upper T\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">S</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">T</mi></msub>$S_T$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. How the confinement radius <span data-altimg=\"/cms/asset/ebc09666-0504-468b-8f45-df1c776df93f/adts202401194-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401194-math-0004.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"r 0\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401194:adts202401194-math-0004\" display=\"inline\" location=\"graphic/adts202401194-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"r 0\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">r</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn></msub>$r_0$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and the screening parameter <span data-altimg=\"/cms/asset/13a7d515-0239-422a-9191-b9a351748bc6/adts202401194-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401194-math-0005.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401194:adts202401194-math-0005\" display=\"inline\" location=\"graphic/adts202401194-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\">α</mi>$\\alpha$</annotation></semantics></math></mjx-assistive-mml></mjx-container> affect these entropies is investigated, and the results are compared to those of unconstrained systems. The findings are contrasted with previously reported results and discussed in relation to the Beckner–Bialynicki–Birula–Mycielski (BBM) inequality, offering insights into the behavior of quantum states under confinement. Significant variations in Shannon entropy and energy levels are observed with changes in confinement and screening parameters, providing a deeper understanding of quantum mechanics in confined systems. The study reveals a critical screening parameter <span data-altimg=\"/cms/asset/bd62aec8-d80a-4951-a61d-48c1a8f7cc27/adts202401194-math-0006.png\"></span><mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401194-math-0006.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha Subscript c\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401194:adts202401194-math-0006\" display=\"inline\" location=\"graphic/adts202401194-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha Subscript c\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">c</mi></msub>$\\alpha _c$</annotation></semantics></math></mjx-assistive-mml></mjx-container> at which the behavior of entropy transitions, shedding light on the interplay between spatial confinement, screening effects, and quantum uncertainties.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"64 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401194","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了空间约束和赫尔曼势对氢原子香农熵的影响。研究分析了被赫尔曼势屏蔽并限制在不可穿透的球形势中的氢原子。利用有限差分法对薛定谔方程进行数值求解,以确定能量特征值和波函数。在位置空间和动量空间对这些波函数进行检验,以计算位置空间的香农熵 Sρ$S_\rho$、动量空间的香农熵 Sγ$S_\gamma$ 以及总香农熵 ST$S_T$。研究了约束半径 r0$r_0$ 和屏蔽参数 α$\alpha$ 如何影响这些熵,并将结果与无约束系统的结果进行了比较。研究结果与之前报道的结果进行了对比,并结合贝克纳-比亚利尼奇-比鲁拉-米谢尔斯基(BBM)不等式进行了讨论,从而对约束下的量子态行为提供了深入的见解。随着约束和屏蔽参数的变化,香农熵和能级也发生了显著变化,从而加深了对约束系统中量子力学的理解。研究揭示了一个临界屏蔽参数αc$\α _c$,在这个参数上,熵的行为会发生转变,从而揭示了空间约束、屏蔽效应和量子不确定性之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of Shannon Entropy and Quantum States of a Confined Hydrogen Atom Screened by the Hellmann Potential

Analysis of Shannon Entropy and Quantum States of a Confined Hydrogen Atom Screened by the Hellmann Potential
This study investigates the impact of spatial confinement and the Hellmann potential on the Shannon entropy of a hydrogenic atom. A hydrogenic atom screened by the Hellmann potential and confined within an impenetrable spherical potential is analyzed. The Schrödinger equation is solved numerically using the finite difference method to determine energy eigenvalues and wavefunctions. These wavefunctions are examined in both position and momentum spaces to calculate the Shannon entropy in position space Sρ$S_\rho$, the Shannon entropy in momentum space Sγ$S_\gamma$, and the total Shannon entropy ST$S_T$. How the confinement radius r0$r_0$ and the screening parameter α$\alpha$ affect these entropies is investigated, and the results are compared to those of unconstrained systems. The findings are contrasted with previously reported results and discussed in relation to the Beckner–Bialynicki–Birula–Mycielski (BBM) inequality, offering insights into the behavior of quantum states under confinement. Significant variations in Shannon entropy and energy levels are observed with changes in confinement and screening parameters, providing a deeper understanding of quantum mechanics in confined systems. The study reveals a critical screening parameter αc$\alpha _c$ at which the behavior of entropy transitions, shedding light on the interplay between spatial confinement, screening effects, and quantum uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信