铁(II)氧化过程中二级铁(氧合)氧化物对Sb(V)的固定化:对Sb(V)掺入和铁(II)矿化机制的见解

IF 3.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Yiqing Wang, Mengchang He, Chunye Lin, Wei Ouyang, Xitao Liu
{"title":"铁(II)氧化过程中二级铁(氧合)氧化物对Sb(V)的固定化:对Sb(V)掺入和铁(II)矿化机制的见解","authors":"Yiqing Wang, Mengchang He, Chunye Lin, Wei Ouyang, Xitao Liu","doi":"10.1016/j.chemgeo.2024.122567","DOIUrl":null,"url":null,"abstract":"Abiotic Fe(II) oxygenation to form secondary Fe (oxyhydr)oxides commonly occurs in natural environments and critically affects the mobility and fate of metalloids such as antimony (Sb). However, the Sb(V) immobilization process and mechanism during Fe(II) oxygenation are not well understood, and the interactions between Sb(V) and formed Fe (oxyhydr)oxides need further study. This study comprehensively investigated Sb(V) immobilization and secondary Fe (oxyhydr)oxides formation during Fe(II) oxygenation for 10 h in the presence of Sb(V). The results indicated that Sb(V) was immobilized by secondary Fe (oxyhydr)oxides mainly via coprecipitation rather than adsorption. Extended X-ray absorption fine structure (EXAFS) analysis further verified that Sb(V) was structurally incorporated into the formed lepidocrocite mainly via edge-sharing linkage and into goethite via edge-sharing and double corner-sharing linkages between SbO<ce:inf loc=\"post\">6</ce:inf> and FeO<ce:inf loc=\"post\">6</ce:inf> octahedra, thus resulting in the formation of various secondary Fe (oxyhydr)oxides. Additionally, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD) characterization demonstrated that Sb(V) incorporation inhibited lepidocrocite formation and favored goethite formation at pH 6 and 7 with initial Sb(V)/Fe(II) molar ratios above 0.01 and 0.04, respectively, and it also hindered magnetite formation at pH 8. Transmission electron microscopy (TEM) suggested that Sb(V) incorporation affected the morphologies of formed Fe (oxyhydr)oxides. Overall, our findings provide valuable insights into Sb(V) immobilization and Fe (oxyhydr)oxides formation during Fe(II) oxygenation, and are conducive to clarifying the geochemical behavior of Sb(V) coupled with Fe(II) at dynamic redox interfaces in Sb(V)-contaminated environments.","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"64 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immobilization of Sb(V) by secondary Fe (oxyhydr)oxides during Fe(II) oxygenation: Insights into Sb(V) incorporation and Fe(II) mineralization mechanisms\",\"authors\":\"Yiqing Wang, Mengchang He, Chunye Lin, Wei Ouyang, Xitao Liu\",\"doi\":\"10.1016/j.chemgeo.2024.122567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abiotic Fe(II) oxygenation to form secondary Fe (oxyhydr)oxides commonly occurs in natural environments and critically affects the mobility and fate of metalloids such as antimony (Sb). However, the Sb(V) immobilization process and mechanism during Fe(II) oxygenation are not well understood, and the interactions between Sb(V) and formed Fe (oxyhydr)oxides need further study. This study comprehensively investigated Sb(V) immobilization and secondary Fe (oxyhydr)oxides formation during Fe(II) oxygenation for 10 h in the presence of Sb(V). The results indicated that Sb(V) was immobilized by secondary Fe (oxyhydr)oxides mainly via coprecipitation rather than adsorption. Extended X-ray absorption fine structure (EXAFS) analysis further verified that Sb(V) was structurally incorporated into the formed lepidocrocite mainly via edge-sharing linkage and into goethite via edge-sharing and double corner-sharing linkages between SbO<ce:inf loc=\\\"post\\\">6</ce:inf> and FeO<ce:inf loc=\\\"post\\\">6</ce:inf> octahedra, thus resulting in the formation of various secondary Fe (oxyhydr)oxides. Additionally, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD) characterization demonstrated that Sb(V) incorporation inhibited lepidocrocite formation and favored goethite formation at pH 6 and 7 with initial Sb(V)/Fe(II) molar ratios above 0.01 and 0.04, respectively, and it also hindered magnetite formation at pH 8. Transmission electron microscopy (TEM) suggested that Sb(V) incorporation affected the morphologies of formed Fe (oxyhydr)oxides. Overall, our findings provide valuable insights into Sb(V) immobilization and Fe (oxyhydr)oxides formation during Fe(II) oxygenation, and are conducive to clarifying the geochemical behavior of Sb(V) coupled with Fe(II) at dynamic redox interfaces in Sb(V)-contaminated environments.\",\"PeriodicalId\":9847,\"journal\":{\"name\":\"Chemical Geology\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemgeo.2024.122567\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.chemgeo.2024.122567","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

非生物铁(II)氧化形成次生铁(氧合)氧化物通常发生在自然环境中,并对锑(Sb)等类金属的迁移性和命运产生关键影响。然而,Fe(II)氧化过程中Sb(V)的固定化过程和机理尚不清楚,Sb(V)与形成的Fe(氧合)氧化物之间的相互作用有待进一步研究。本研究全面考察了Sb(V)存在下,Fe(II)氧化10 h时Sb(V)的固定化和次生Fe(氧合)氧化物的形成。结果表明,Sb(V)主要通过共沉淀而不是吸附的方式被次级铁(氧)氧化物固定。扩展x射线吸收精细结构(EXAFS)分析进一步证实Sb(V)在结构上主要通过共边键进入形成的鳞石中,并通过SbO6与FeO6八面体之间的共边键和双共角键进入针铁矿中,从而形成各种次生铁(氧)氧化物。傅里叶变换红外光谱(FTIR)、拉曼光谱(Raman)和x射线衍射(XRD)表征表明,Sb(V)掺入抑制了蛭石的形成,有利于针铁矿的形成,pH值为6和7,初始Sb(V)/Fe(II)摩尔比分别大于0.01和0.04,并且在pH值为8时阻碍了磁铁矿的形成。透射电镜(TEM)显示Sb(V)的掺入影响了形成的铁(氧)氧化物的形貌。总的来说,我们的研究结果为研究Fe(II)氧化过程中Sb(V)的固定化和Fe(氧合)氧化物的形成提供了有价值的见解,并有助于阐明Sb(V)污染环境中Sb(V)与Fe(II)在动态氧化还原界面上的地球化学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immobilization of Sb(V) by secondary Fe (oxyhydr)oxides during Fe(II) oxygenation: Insights into Sb(V) incorporation and Fe(II) mineralization mechanisms
Abiotic Fe(II) oxygenation to form secondary Fe (oxyhydr)oxides commonly occurs in natural environments and critically affects the mobility and fate of metalloids such as antimony (Sb). However, the Sb(V) immobilization process and mechanism during Fe(II) oxygenation are not well understood, and the interactions between Sb(V) and formed Fe (oxyhydr)oxides need further study. This study comprehensively investigated Sb(V) immobilization and secondary Fe (oxyhydr)oxides formation during Fe(II) oxygenation for 10 h in the presence of Sb(V). The results indicated that Sb(V) was immobilized by secondary Fe (oxyhydr)oxides mainly via coprecipitation rather than adsorption. Extended X-ray absorption fine structure (EXAFS) analysis further verified that Sb(V) was structurally incorporated into the formed lepidocrocite mainly via edge-sharing linkage and into goethite via edge-sharing and double corner-sharing linkages between SbO6 and FeO6 octahedra, thus resulting in the formation of various secondary Fe (oxyhydr)oxides. Additionally, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD) characterization demonstrated that Sb(V) incorporation inhibited lepidocrocite formation and favored goethite formation at pH 6 and 7 with initial Sb(V)/Fe(II) molar ratios above 0.01 and 0.04, respectively, and it also hindered magnetite formation at pH 8. Transmission electron microscopy (TEM) suggested that Sb(V) incorporation affected the morphologies of formed Fe (oxyhydr)oxides. Overall, our findings provide valuable insights into Sb(V) immobilization and Fe (oxyhydr)oxides formation during Fe(II) oxygenation, and are conducive to clarifying the geochemical behavior of Sb(V) coupled with Fe(II) at dynamic redox interfaces in Sb(V)-contaminated environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Geology
Chemical Geology 地学-地球化学与地球物理
CiteScore
7.20
自引率
10.30%
发文量
374
审稿时长
3.6 months
期刊介绍: Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry. The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry. Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry. The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信