具有非线性延迟Gamma-Ricker函数和随机扰动的蜱虫种群系统的最终有界性和估计

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xingzhi Chen
{"title":"具有非线性延迟Gamma-Ricker函数和随机扰动的蜱虫种群系统的最终有界性和估计","authors":"Xingzhi Chen","doi":"10.1016/j.chaos.2024.115824","DOIUrl":null,"url":null,"abstract":"<div><div>Stochastically ultimate boundedness and Lyapunov exponent estimation are fundamental in the analysis of stochastic models. These properties are particularly crucial for addressing stochastic biological models that incorporate delays, necessitating the application of advanced mathematical techniques. In this paper, a stochastic tick population model incorporating non-linear delayed Gamma-Ricker function is proposed and examined. Then, several critical issues related to the stochastic model are investigated, including the global nonnegative solution and the ultimately bounded solution, and Lyapunov exponent estimation. Finally, a numerical simulation is presented to confirm the mathematical findings and illustrate the practical applicability of the analysis.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"191 ","pages":"Article 115824"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultimate boundedness and estimation of tick population system with non-linear delayed Gamma-Ricker function and stochastic perturbation\",\"authors\":\"Xingzhi Chen\",\"doi\":\"10.1016/j.chaos.2024.115824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stochastically ultimate boundedness and Lyapunov exponent estimation are fundamental in the analysis of stochastic models. These properties are particularly crucial for addressing stochastic biological models that incorporate delays, necessitating the application of advanced mathematical techniques. In this paper, a stochastic tick population model incorporating non-linear delayed Gamma-Ricker function is proposed and examined. Then, several critical issues related to the stochastic model are investigated, including the global nonnegative solution and the ultimately bounded solution, and Lyapunov exponent estimation. Finally, a numerical simulation is presented to confirm the mathematical findings and illustrate the practical applicability of the analysis.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"191 \",\"pages\":\"Article 115824\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924013766\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924013766","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随机极限有界性和李雅普诺夫指数估计是分析随机模型的基础。这些性质对于解决包含延迟的随机生物模型尤其重要,需要应用先进的数学技术。本文提出了一种包含非线性延迟Gamma-Ricker函数的随机蜱虫种群模型,并对其进行了检验。然后,研究了随机模型的几个关键问题,包括全局非负解和最终有界解,以及Lyapunov指数估计。最后,通过数值模拟验证了数学结果,并说明了分析的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultimate boundedness and estimation of tick population system with non-linear delayed Gamma-Ricker function and stochastic perturbation
Stochastically ultimate boundedness and Lyapunov exponent estimation are fundamental in the analysis of stochastic models. These properties are particularly crucial for addressing stochastic biological models that incorporate delays, necessitating the application of advanced mathematical techniques. In this paper, a stochastic tick population model incorporating non-linear delayed Gamma-Ricker function is proposed and examined. Then, several critical issues related to the stochastic model are investigated, including the global nonnegative solution and the ultimately bounded solution, and Lyapunov exponent estimation. Finally, a numerical simulation is presented to confirm the mathematical findings and illustrate the practical applicability of the analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信