ii型狄拉克光子晶格中多极孤子的传播动力学及分数衍射效应对孤子的影响

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Da-Sheng Mou, Jia-Hao Zhang, Yun-Hao Jia, Chao-Qing Dai
{"title":"ii型狄拉克光子晶格中多极孤子的传播动力学及分数衍射效应对孤子的影响","authors":"Da-Sheng Mou,&nbsp;Jia-Hao Zhang,&nbsp;Yun-Hao Jia,&nbsp;Chao-Qing Dai","doi":"10.1016/j.chaos.2024.115895","DOIUrl":null,"url":null,"abstract":"<div><div>By changing the depth of the waveguide and adjusting the band structure to make the bandgap appear, the influence of the integer- and fractional-order diffractions on two-dimensional spatial localized modes in the II-type Dirac photonic lattices are investigated. Under the nonlinear action, the linear topological mode is transformed into a set of topological gap solitons, which form stable integer-order fundamental and dipole solions, and unstable quadrupole solion. Stable fractional-order fundamental and dipole solions and metastable quadrupole solion are obtained by decreasing the Lévy index, and the propagation dynamics of these solitons are discussed. By comparing the integer-order with the fractional-order solitons, it is proved that the propagation constant as well as the Lévy index play a crucial role in the stability of soliton. The findings enable insightful studies of highly localized gap modes in linear nonlocality (fractional) physical systems.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"191 ","pages":"Article 115895"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propagation dynamics of multipole solitons and influence of fractional diffraction effect on solitons in II-type Dirac photonic lattices\",\"authors\":\"Da-Sheng Mou,&nbsp;Jia-Hao Zhang,&nbsp;Yun-Hao Jia,&nbsp;Chao-Qing Dai\",\"doi\":\"10.1016/j.chaos.2024.115895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By changing the depth of the waveguide and adjusting the band structure to make the bandgap appear, the influence of the integer- and fractional-order diffractions on two-dimensional spatial localized modes in the II-type Dirac photonic lattices are investigated. Under the nonlinear action, the linear topological mode is transformed into a set of topological gap solitons, which form stable integer-order fundamental and dipole solions, and unstable quadrupole solion. Stable fractional-order fundamental and dipole solions and metastable quadrupole solion are obtained by decreasing the Lévy index, and the propagation dynamics of these solitons are discussed. By comparing the integer-order with the fractional-order solitons, it is proved that the propagation constant as well as the Lévy index play a crucial role in the stability of soliton. The findings enable insightful studies of highly localized gap modes in linear nonlocality (fractional) physical systems.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"191 \",\"pages\":\"Article 115895\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924014474\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924014474","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

通过改变波导深度和调整带结构使带隙出现,研究了整数级和分数级衍射对ii型狄拉克光子晶格二维空间局域模式的影响。在非线性作用下,线性拓扑模式转化为一组拓扑间隙孤子,形成稳定的整阶基偶极子解和不稳定的四极子解。通过减小l薪金指数,得到了稳定的分数阶基偶极子解和亚稳的四极子解,并讨论了这些孤子的传播动力学。通过对整数阶孤子和分数阶孤子的比较,证明了传播常数和lsamvy指数对孤子的稳定性起着至关重要的作用。这些发现使得对线性非定域(分数)物理系统中高度局域化的间隙模式进行深入的研究成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Propagation dynamics of multipole solitons and influence of fractional diffraction effect on solitons in II-type Dirac photonic lattices
By changing the depth of the waveguide and adjusting the band structure to make the bandgap appear, the influence of the integer- and fractional-order diffractions on two-dimensional spatial localized modes in the II-type Dirac photonic lattices are investigated. Under the nonlinear action, the linear topological mode is transformed into a set of topological gap solitons, which form stable integer-order fundamental and dipole solions, and unstable quadrupole solion. Stable fractional-order fundamental and dipole solions and metastable quadrupole solion are obtained by decreasing the Lévy index, and the propagation dynamics of these solitons are discussed. By comparing the integer-order with the fractional-order solitons, it is proved that the propagation constant as well as the Lévy index play a crucial role in the stability of soliton. The findings enable insightful studies of highly localized gap modes in linear nonlocality (fractional) physical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信